
SCA version 2.2.2, REDHAWK 2.3 LTS

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION WITH REDHAWK ADDITIONS

Version 2.2.2

R.2.3 LTS

SCA version 2.2.2, REDHAWK 2.3 LTS

i

TABLE OF CONTENTS

1 INTRODUCTION.. 1-1

1.1 Document Conventions, Terminology, and Definitions .. 1-1

1.1.1 Conventions and Terminology .. 1-1

1.1.1.1 REDHAWK Markings ... 1-1

1.1.1.2 File and Directory Nomenclature ... 1-1

1.1.1.3 Unified Modeling Language .. 1-2

1.1.1.4 Interface Definition Language ... 1-2

1.1.1.5 eXtensible Markup Language .. 1-2

1.1.1.6 Requirements Language ... 1-2

1.1.1.7 Core Framework Interface and Operation Identification 1-2

1.1.1.8 Figures.. 1-2

1.2 Document Content .. 1-3

1.3 Normative References ... 1-3

1.4 Informative References .. 1-3

2 OVERVIEW ... 2-1

2.1 Architecture Definition Methodology ... 2-1

2.2 Architecture Overview ... 2-1

2.2.1 Goals and Context ... 2-1

2.2.2 Core Framework ... 2-2

2.2.3 Definitions... 2-2

2.2.4 Structure .. 2-2

2.2.4.1 Bus Layer (Board Support Package) .. 2-6

2.2.4.2 Network & Serial Interface Services ... 2-6

2.2.4.3 Operating System ... 2-6

2.2.4.4 CORBA Middleware ... 2-6

2.2.4.5 Applications ... 2-7

2.2.4.5.1 Adapters ... 2-7

2.2.4.6 Reference Model .. 2-7

3 SOFTWARE ARCHITECTURE DEFINITION .. 3-1

3.1 Operating Environment ... 3-1

3.1.1 Operating System .. 3-1

3.1.2 CORBA Middleware & Services .. 3-1

3.1.2.1 Naming Service .. 3-2

3.1.2.2 Log Service .. 3-2

SCA version 2.2.2, REDHAWK 2.3 LTS

ii

3.1.2.2.1 Log Producers .. 3-2

3.1.2.3 CORBA Event Service and Standard Events ... 3-2

3.1.2.3.1 CORBA Event Service ... 3-2

3.1.2.3.2 StandardEvent Module ... 3-3

3.1.3 Core Framework ... 3-5

3.1.3.1 Base Application Interfaces ... 3-6

3.1.3.1.1 Port ... 3-6

3.1.3.1.2 LifeCycle .. 3-8

3.1.3.1.3 TestableObject .. 3-11

3.1.3.1.4 PortSupplier .. 3-14

3.1.3.1.5 PropertySet ... 3-16

3.1.3.1.6 PropertyEmitter .. 3-19

3.1.3.1.7 PropertyChangeListener ... 3-22

3.1.3.1.8 Logging Interfaces .. 3-24

3.1.3.1.9 Resource ... 3-34

3.1.3.1.10 ResourceFactory ... 3-37

3.1.3.2 Framework Control Interfaces ... 3-40

3.1.3.2.1 Application ... 3-40

3.1.3.2.2 ApplicationFactory ... 3-49

3.1.3.2.3 DomainManager ... 3-55

3.1.3.2.4 DeviceManager .. 3-75

3.1.3.2.5 AllocationManager ... 3-83

3.1.3.2.6 AllocationStatusIterator ... 3-92

3.1.3.2.7 DeviceLocationIterator ... 3-93

3.1.3.2.8 ConnectionStatusIterator .. 3-95

3.1.3.2.9 ConnectionManager ... 3-97

3.1.3.2.10 EventChannelInfoIterator ... 3-100

3.1.3.2.11 EventRegistrantIterator .. 3-101

3.1.3.2.12 EventChannelManager ... 3-103

3.1.3.2.13 ApplicationRegistrar .. 3-110

3.1.3.3 Base Device Interfaces ... 3-111

3.1.3.3.1 Device ... 3-111

3.1.3.3.2 LoadableDevice .. 3-121

3.1.3.3.3 ExecutableDevice ... 3-125

3.1.3.3.4 AggregateDevice .. 3-130

3.1.3.3.5 AggregateExecutableDevice .. 3-132

3.1.3.3.6 AggregateLoadableDevice ... 3-134

3.1.3.3.7 AggregatePlainDevice .. 3-136

SCA version 2.2.2, REDHAWK 2.3 LTS

iii

3.1.3.4 Framework Services Interfaces .. 3-136

3.1.3.4.1 File .. 3-137

3.1.3.4.2 FileSystem .. 3-139

3.1.3.4.3 FileManager ... 3-147

3.1.3.5 Complex Type Interfaces ... 3-151

3.1.3.5.1 complexDouble .. 3-151

3.1.3.5.2 complexDoubleSeq .. 3-151

3.1.3.5.3 complexFloat .. 3-151

3.1.3.5.4 complexFloatSeq .. 3-152

3.1.3.5.5 complexBoolean ... 3-152

3.1.3.5.6 complexBooleanSeq ... 3-152

3.1.3.5.7 complexULong ... 3-152

3.1.3.5.8 complexULongSeq ... 3-152

3.1.3.5.9 complexShort ... 3-152

3.1.3.5.10 complexShortSeq ... 3-152

3.1.3.5.11 complexOctet ... 3-153

3.1.3.5.12 complexOctetSeq ... 3-153

3.1.3.5.13 complexChar .. 3-153

3.1.3.5.14 complexCharSeq .. 3-153

3.1.3.5.15 complexUShort ... 3-153

3.1.3.5.16 complexUShortSeq ... 3-153

3.1.3.5.17 complexLong .. 3-153

3.1.3.5.18 complexLongSeq .. 3-154

3.1.3.5.19 complexLongLong ... 3-154

3.1.3.5.20 complexULongLongSeq .. 3-154

3.1.3.5.21 complexULongLong .. 3-154

3.1.3.5.22 complexULongLongSeq .. 3-154

3.1.3.6 Domain Profile ... 3-154

3.1.3.6.1 Software Package Descriptor ... 3-156

3.1.3.6.2 Software Component Descriptor .. 3-156

3.1.3.6.3 Software Assembly Descriptor ... 3-156

3.1.3.6.4 Properties Descriptor .. 3-156

3.1.3.6.5 Device Package Descriptor .. 3-156

3.1.3.6.6 Device Configuration Descriptor ... 3-156

3.1.3.6.7 Profile Descriptor ... 3-156

3.1.3.6.8 DomainManager Configuration Descriptor ... 3-156

3.1.3.7 Core Framework Base Types ... 3-156

3.1.3.7.1 DataType .. 3-157

SCA version 2.2.2, REDHAWK 2.3 LTS

iv

3.1.3.7.2 DeviceSequence ... 3-157

3.1.3.7.3 FileException ... 3-157

3.1.3.7.4 InvalidFileName ... 3-157

3.1.3.7.5 InvalidObjectReference .. 3-157

3.1.3.7.6 InvalidProfile .. 3-157

3.1.3.7.7 DuplicateName ... 3-157

3.1.3.7.8 InvalidIdentifier .. 3-157

3.1.3.7.9 UnallowedAccess ... 3-158

3.1.3.7.10 OctetSequence .. 3-158

3.1.3.7.11 Properties .. 3-158

3.1.3.7.12 StringSequence ... 3-158

3.1.3.7.13 UnknownProperties .. 3-158

3.1.3.7.14 DeviceAssignmentType ... 3-158

3.1.3.7.15 DeviceAssignmentSequence .. 3-158

3.1.3.7.16 ErrorNumberType .. 3-158

3.2 Applications ... 3-159

3.2.1 General Application Requirements ... 3-159

3.2.1.1 OS Services .. 3-159

3.2.1.2 CORBA Services ... 3-159

3.2.1.3 CF Interfaces .. 3-159

3.2.2 Application Interfaces ... 3-160

3.2.2.1 Service Definitions... 3-160

3.3 Logical Device .. 3-160

3.3.1 OS Services ... 3-162

3.3.2 CORBA Services .. 3-162

3.3.3 CF Interfaces ... 3-162

3.3.4 Profile .. 3-162

3.4 General Software Rules .. 3-163

4 ARCHITECTURE COMPLIANCE .. 4-1

SCA version 2.2.2, REDHAWK 2.3 LTS

v

LIST OF FIGURES

Figure 2-1: SCA Architecture Layer Diagram .. 2-3

Figure 2-2: SCA Management Hierarchy at Instantiation .. 2-4

Figure 2-3: Relationship of Domain Profile XML File Types .. 2-5

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP 3-1

Figure 3-2: Core Framework IDL Relationships .. 3-6

Figure 3-3: Port Interface UML ... 3-7

Figure 3-4: LifeCycle Interface UML ... 3-9

Figure 3-5: TestableObject Interface UML .. 3-12

Figure 3-6: PortSupplier Interface UML .. 3-14

Figure 3-7: PropertySet Interface UML ... 3-17

Figure 3-8: PropertyEmitter Interface UML .. 3-20

Figure 3-9: PropertyChangeListener Interface UML ... 3-23

Figure 3-10: LogConfiguration Interface UML .. 3-29

Figure 3-11: Logging Interface UML ... 3-33

Figure 3-12: Resource Interface UML .. 3-35

Figure 3-13: ResourceFactory Interface UML ... 3-38

Figure 3-14: Application Interface UML .. 3-41

Figure 3-15: Application Behavior ... 3-47

Figure 3-16: ApplicationFactory UML .. 3-49

Figure 3-17: ApplicationFactory Behavior ... 3-55

Figure 3-18: DomainManager Interface UML ... 3-56

Figure 3-19: DomainManager Sequence Diagram for registerDeviceManager Operation 3-63

Figure 3-20: DomainManager Sequence Diagram for registerDevice Operation 3-65

Figure 3-21: DomainManager Sequence Diagram for registerService Operation 3-72

Figure 3-22: DeviceManager UML .. 3-76

Figure 3-23: DeviceManager Startup Scenario .. 3-80

Figure 3-24: AllocationManager UML .. 3-85

Figure 3-25: AllocationStatusIterator Interface UML .. 3-92

Figure 3-26: DeviceLocationIterator Interface UML ... 3-94

Figure 3-27: ConnectionStatusIterator Interface UML .. 3-95

Figure 3-28: ConnectionManager Interface UML ... 3-97

Figure 3-29: EventChannelInfoIterator Interface UML ... 3-100

Figure 3-30: EventRegistrantIterator Interface UML .. 3-102

Figure 3-31: EventChannelManager Interface UML ... 3-103

Figure 3-32: ApplicationRegistrar Interface UML ... 3-110

Figure 3-33: Device Interface UML ... 3-113

SCA version 2.2.2, REDHAWK 2.3 LTS

vi

Figure 3-34: State Transition Diagram for adminState ... 3-116

Figure 3-35: State Transition Diagram for allocateCapacity and deallocateCapacity 3-118

Figure 3-36: Release Aggregated Device Scenario .. 3-119

Figure 3-37: Release Composite Device Scenario .. 3-120

Figure 3-38: Release Composite & Aggregated Device Scenario .. 3-121

Figure 3-39: LoadableDevice Interface UML .. 3-122

Figure 3-40: ExecutableDevice Interface UML .. 3-126

Figure 3-41: AggregateDevice Interface UML ... 3-131

Figure 3-42: AggregateExecutableDevice Interface UML ... 3-133

Figure 3-43: AggregateLoadableDevice Interface UML .. 3-135

Figure 3-44: AggregatePlainDevice Interface UML .. 3-136

Figure 3-45: File Interface UML .. 3-137

Figure 3-46: FileSystem Interface UML ... 3-140

Figure 3-47: FileManager Interface UML ... 3-148

Figure 3-48: Relationship of Domain Profile XML File Types ... 3-155

Figure 3-49: Logical Device Interface Relationships ... 3-161

SCA version 2.2.2, REDHAWK 2.3 LTS

1-1

1 INTRODUCTION

This section has changed considerably in this document. The REDHAWK
programmatic scope and goals are different from the programmatic goals of
the office that created the SCA specification. REDHAWK is not centered on a
specification for a framework. Instead, it is an implementation of a framework
whose application programming interface (API) is documented in part by this
modified specification. REDHAWK also includes a data and control API, an
integrated development environment (IDE), a set of component/device/service
base classes, code generators, an implementation of the data and control API
(ports), a Python interactive/scriptable environment, a set of reusable
Components, a set of reusable Device proxies, a set of binary installation files
for a set of specific operating systems (OS), and a set of debugging and
diagnostic tools, none of which are documented in this specification.

For more information on REDHAWK, please visit
http://www.redhawksdr.org.

The Software Communications Architecture (SCA) establishes an implementation-independent
framework with baseline requirements for the development of software for software defined
radios. The SCA is an architectural framework that was created to maximize portability,
interoperability, and configurability of the software while still allowing the flexibility to address
domain specific requirements and restrictions. Constraints on software development imposed by
the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed. This document describes the interfaces and
functionality of the REDHAWK Core Framework implementation.

1.1 DOCUMENT CONVENTIONS, TERMINOLOGY, AND
DEFINITIONS

1.1.1 Conventions and Terminology

1.1.1.1 REDHAWK Markings

Throughout this document, REDHAWK markings (REDHAWK logo and text encased in a red
box) are included. These markings indicate deviations from SCA 2.2.2 that the REDHAWK
framework has implemented.

1.1.1.2 File and Directory Nomenclature

The terms “file” and “filename” as used in the SCA, refer to both a “plain file” (equivalent to a
POSIX “regular file”) and a directory. An explicit reference is made within the text when
referring to only one of these.

Pathnames are used in accordance with the POSIX specification definition and may reference
either a plain file or a directory. An “absolute pathname” is a pathname that starts with a “/”
(forward slash) character – a “relative pathname” does not have the leading “/” character. A
“path prefix” is a pathname that refers to a directory and thus does not include the name of a
plain file.

SCA version 2.2.2, REDHAWK 2.3 LTS

1-2

1.1.1.3 Unified Modeling Language

The Unified Modeling Language (UML) [2], defined by the Object Management Group (OMG),
is used to graphically represent SCA interfaces, operational scenarios, use cases, and
collaboration diagrams. Where feasible, the UML used in this specification conforms to the
syntax recommended by the OMG for Common Object Request Broker Architecture (CORBA)
usage [A].

1.1.1.4 Interface Definition Language

The OMG defined Interface Definition Language (IDL), [E] is used to define the SCA interfaces
within this specification.

1.1.1.5 eXtensible Markup Language

eXtensible Markup Language (XML) [3] is used to create the Domain Profile elements that
identify the capabilities, properties, inter-dependencies, and location of the hardware devices and
software components that make up the REDHAWK system. The term “profile” is used to refer to
the raw XML format of these files as well as these same files in a parsed format. References to a
specific file (e.g., SAD, DCD) refer to the raw XML format per the definitions in 3.1.3.6 Domain
Profile.

1.1.1.6 Requirements Language

The word “shall” is used to indicate absolute requirements of this specification, which must be
strictly followed. No deviations are permitted.

The phrase “shall not” is used to indicate a strict and absolute prohibition of this specification.

The word “should” is used to indicate a recommended course of action among several possible
choices, without mentioning or excluding others. “Should not” is used to discourage a course of
action without prohibiting it.

The word “may” is used to indicate a truly optional item or allowable course of action within the
scope of the specification. A product that chooses not to implement the indicated item must be
able to interoperate with one that does without impairment of required behavior.

The word “is” (or equivalently “are”) used in conjunction with the association of a value to a
data type indicates a required value or condition when multiple values or conditions are possible.

1.1.1.7 Core Framework Interface and Operation Identification

References to interface names, their operations and defined XML elements/attributes within this
specification are presented in italicized text. All interface names are capitalized. Interface
attributes, operation parameters, and realized interfaces are presented in plain text. “CF”
precedes references to Core Framework Base Types (refer to 3.1.3.7 Core Framework Base
Types).

1.1.1.8 Figures

The figures contained in this document use coloration to identify elements of the SCA or how an
object in a figure relates to those elements. Brown is used to indicate elements of the OS, orange
for the Framework Control, Framework Service, and Device Interfaces and yellow for the Base
Application Interfaces. Figure objects containing more than one of these colors indicate that the
object relates to more than one SCA element – usually depending on context.

SCA version 2.2.2, REDHAWK 2.3 LTS

1-3

1.2 DOCUMENT CONTENT

Section 1 Introduction of this document provides an introduction to this specification and
provides the definitions and rules for its usage.

Section 2 Overview provides an overview of the Software Communications Architecture as well
as a description of the interfaces and behaviors prescribed by the specification.

Section 3 Software Architecture Definition provides the detailed description of the architecture
framework and the specification requirements.

Section 4 Architecture Compliance describes architecture compliance in the context of
REDHAWK.

1.3 NORMATIVE REFERENCES

The following documents contain provisions or requirements, which by reference, constitute
requirements of this specification. Applicable versions are as stated.

[1] Information technology - Portable Operating System Interface (POSIX®), ISO/IEC
9945:2003.

[2] UML: OMG (Object Management Group) Unified Modeling Language Specification,
Version 1.4.2, formal/05-04-01 (also available as ISO/IEC 19501:2005(E).

[3] XML: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation,
04 February 2004.

[4] IEEE Standard for Information Technology – Standardized Application Environment
Profile (AEP) – POSIX Realtime and Embedded Application Support, IEEE Std
1003.13-2003.

[5] Minimum CORBA Specification version 1.0: OMG Document formal/02-08-01, August
2001.

[6] OMG Document formal/00-11-01: Interoperable Naming Service Specification.

[7] OMG Lightweight Log Service Specification: OMG Document formal/05-02-02: v1.1.

[8] OMG Event Service Specification: OMG Document formal/01-03-01 and Event Service
IDL, v1.1.

[9] DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote
Procedure Call).

1.4 INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as reference or
guidance material in its development.

[A] OMG Document formal/02-04-01; UML Profile for CORBA, version 1.0.

[B] “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides.

[C] Joint Program Executive Office for the Joint Tactical Radio System (JPEO JTRS), JTRS
Charter 13 October 2005.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA version 2.2.2, REDHAWK 2.3 LTS

1-4

[D] JTRS Standards Waiver Process, JPEO JTRS, 2 December 2005, version 1.0.

[E] The Common Object Request Broker: Architecture and Specification, version 3.0.3
formal/04-03-12, Object Management Group, Inc. (OMG).

[F] Joint Technical Architecture, Version 2.0, 26 May 1998.

[G] C Standard: Programming languages – C, ISO/IEC 9899:1999.

[H] ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and
Additional Time Sequence Diagrams for Two-party Communications.

SCA version 2.2.2, REDHAWK 2.3 LTS

2-1

2 OVERVIEW
This section presents an architectural overview of the SCA, which defines the fundamental
organization of the components that compose this specification. A high-level description of the
components, their responsibilities, as well as their relationship to each other and the environment
are also provided. Technical details and specific requirements of the architecture and individual
components are contained in 3 Software Architecture Definition.

2.1 ARCHITECTURE DEFINITION METHODOLOGY

The architecture has been developed using an object-oriented approach including current best
practices from software component models and software design patterns. Unless stated, no
explicit grouping or separation of interfaces is required within an implementation. The interface
definitions and required behaviors that follow in 3 Software Architecture Definition, define the
responsibilities, roles, and relationships of components implementing that interface. Within this
specification, the Unified Modeling Language (UML) [2] is used to graphically represent
interfaces and the Interface Definition Language (IDL) is contained in each section’s description.

2.2 ARCHITECTURE OVERVIEW

2.2.1 Goals and Context

The goal of this specification is to provide for the deployment, management, interconnection,
and intercommunication of software components in embedded, distributed-computing
communication systems. This specification is targeted towards facilitating the development of
software defined radios (SDRs) with the additional goals of maximizing software application
portability, reusability, and scalability through the use of commercial protocols and products.

Although there are many definitions of an SDR, it is in essence a radio or communication system
whose output signal is determined by software. In this sense, the output is entirely
reconfigurable at any given time, within the limits of the radio or system hardware capabilities
(e.g., processing elements, power amplifiers, antennas, etc.) merely by loading new software as
required by the user. Since this software determines the output signal of the system, it is
typically referred to as “waveform software” or simply as the “waveform” itself. This ability to
add, remove, or modify the output of the system through reconfigurable and redeployable
software, leads to communication systems capable of multiple mode operation (including
variable signal formatting, data rates, and bandwidths) within a single hardware configuration.
Simultaneous multi-mode operation is possible when a multi-channel configuration is available.

Since the functionality of software itself is virtually limitless, there is a large degree of
dependency placed on the ability to select and configure the appropriate hardware to support the
software available or required for a specific system. The selection of hardware is not restricted to
the input/output (I/O) devices typically associated with communication systems (analog-to-
digital converters, power amplifiers, etc.). It is also dependent on the type and capabilities of the
processing elements (General Purpose Processors (GPP), Digital Signal Processors (DSP), Field-
Programmable Gate Arrays (FPGA), etc.) that are required to be present, since typically the
software required to generate a given output signal will consist of many components of different
types based on performance requirements. From an illustrative view, this results in a system that
is represented by a variable collection of hardware elements, which need to be connected
together to form communication pathways based on the specific software loaded onto the system.

SCA version 2.2.2, REDHAWK 2.3 LTS

2-2

The role of the SCA is then to provide a common infrastructure for managing the software and
hardware elements present in a system and ensuring that their requirements and capabilities are
commensurate. The SCA accomplishes this function by defining a set of interfaces that isolate
the system applications from the underlying hardware. This set of interfaces is referred to as the
Core Framework of the SCA.

Additionally, the SCA provides the infrastructure and support elements needed to ensure that
once software components are deployed on a system, they are able to execute and communicate
with the other hardware and software elements present in the system.

2.2.2 Core Framework

The Core Framework is the essential set of open application-layer CORBA interfaces and
services that provide an abstraction of the underlying system software and hardware. The Core
Framework consists of:

Base Application Interfaces: Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource, which provide the management and
control interfaces for all system software components.

Base Device Interfaces: Device, LoadableDevice, ExecutableDevice, and
AggregateDevice, which allow the management and control of hardware devices within
the system through their software interface.

Framework Control Interfaces: Application, ApplicationFactory, DomainManager,
and DeviceManager, which control the instantiation, management, and
destruction/removal of software from the system.

Framework Services Interfaces: File, FileSystem, and FileManager, which provide
additional support functions and services.

2.2.3 Definitions

The SCA differentiates between waveform “application” software – software that manipulates
input data and determines the output of the system – from the software that provides the
capabilities for waveforms to execute and access to the systems hardware resources. The
“application” software implements the Base Application Interfaces identified in 2.2.2 Core
Framework. The software components that provide access to the system hardware resources are
referred to as SCA “devices” that implement the Base Device Interfaces. Non-hardware
(software-only) resources provided by the system for use by applications are generically referred
to as “services,” however, the SCA does not specify an interface that must be realized by these
components. The SCA standardizes the component interfaces but does not place implementation
requirements (e.g., transport mechanisms) on the software.

The software components that provide for the management and execution of the SCA
applications and devices comprise the SCA-defined operating environment (OE). The OE
consists of an operating system (OS), CORBA middleware (including the OMG-defined Event
and Naming Services), and the elements defined by the Framework Control and Service
Interfaces.

2.2.4 Structure

The architectural structure of the SCA is presented in Figure 2-1: SCA Architecture Layer
Diagram. In the SCA, an application consists of multiple software components that are loaded

SCA version 2.2.2, REDHAWK 2.3 LTS

2-3

onto a distributed-processing system. These components are managed by an implementation of
the Framework Control Interfaces. The application components communicate either with each
other or with the services and devices provided by the system through extensions of the SCA-
defined Port interface. Similarly, communications between the application and the Framework
Services Interfaces are accomplished through the CORBA middleware. It is intended that the
APIs to the services and devices (“System Components” in Figure 2-1: SCA Architecture Layer
Diagram) be standardized for a given system or domain so that in conjunction with the
Framework Interfaces, all communications between the application and the system are uniform
across multiple systems. However, being system and domain specific, the standardization of
these interfaces is outside the scope of this specification.

REDHAWK does not restrict applications to the OS functionality enumerated
in the SCA Application Environment Profile. If an application component
utilizes functionality outside of that specified in the Application Environment
Profile, the implementation element aepcompliance attribute shall be set to
“aep_non_compliant”. A component that is “aep_non_compliant” may not be
portable to all REDHAWK-based systems.

Similar to the application components, system components are managed by the Framework
Control Interfaces through the Base Device Interfaces and are limited. However, unlike
application components, system components are not restricted in their use of functionality
provided by the OS because these components are in general, system specific.

Figure 2-1: SCA Architecture Layer Diagram

All SCA compliant systems require certain software components to be present in order to
provide for component deployment, management, and interconnection. These components

CORBA

FC FS FC
AEP

FS FC
AEP

CORBA

FS

System
Component

Application
Component

CORBA

FC FS

Application
Component

System
Component

API

API

API

Operating System

Legend
Application Component…………………………….

System Component………………………………...

Common Object Request Broker (CORBA)……..

SCA Application Environment Profile (AEP)……..

Framework Control (FC) and
Framework Services (FS)………………………....

LegendLegend
Application Component…………………………….Application Component…………………………….

System Component………………………………...System Component………………………………...

Common Object Request Broker (CORBA)……..Common Object Request Broker (CORBA)……..

SCA Application Environment Profile (AEP)……..SCA Application Environment Profile (AEP)……..

Framework Control (FC) and
Framework Services (FS)………………………....
Framework Control (FC) and
Framework Services (FS)………………………....

SCA version 2.2.2, REDHAWK 2.3 LTS

2-4

include the DomainManager (including support for the ApplicationFactory and Application
interfaces), DeviceManager, FileManager, and FileSystem interfaces and their required
behaviors. The management hierarchy of these entities is depicted in Figure 2-2: SCA
Management Hierarchy at Instantiation.

An SCA compliant system includes a domain manager, which contains knowledge of all existing
implementations installed or loaded onto the system including references to all file systems
(through the file manager), device managers, and all applications (and their resources).

Each device manager, in turn, contains complete knowledge of a set of devices and/or services.
A system may have multiple device managers but each device manager registers with the domain
manager to ensure that the domain manager has complete cognizance of the system. A device
manager may have an associated file system (or file manager to support multiple file systems) as
indicated in Figure 2-2: SCA Management Hierarchy at Instantiation.

The implementation of the Application interface (created by the ApplicationFactory) OE
provided proxy for an application contains all the information regarding a specific application
that is instantiated on the system.

Figure 2-2: SCA Management Hierarchy at Instantiation

In order to describe the characteristics and attributes of the services, devices, and applications
installed on the system, the SCA defines a set of files referred to as the Domain Profile. The
Domain Profile is a hierarchical collection of eXtensible Markup Language (XML) files that
define the properties of all software components in the system. All CORBA software elements
of the system are described by a Software Package Descriptor (SPD) and a Software Component
Descriptor (SCD) file.

The SPD provides identification of the software (title, author, etc.) as well as the name of the
code file (executable, library, or driver), implementation details (language, OS, etc.),

SCA version 2.2.2, REDHAWK 2.3 LTS

2-5

configuration and initialization properties (contained in a Properties File), dependencies to other
SPDs and devices, and a reference to a Software Component Descriptor.

The Software Component Descriptor (SCD) defines CORBA interfaces supported and used by a
specific component.

Because applications are composed of multiple SW components, a Software Assembly
Descriptor (SAD) file is defined to determine the composition and configuration of the
application. The SAD references all SPDs needed for this application, defines required
connections between application components (connection of provides and uses ports/interfaces),
defines needed connections to devices and services, provides additional information on how to
locate the needed devices and services, defines any co-location (deployment) dependencies, and
identifies a single component within the application as the assembly controller.

Figure 2-3: Relationship of Domain Profile XML File Types

SCA version 2.2.2, REDHAWK 2.3 LTS

2-6

An application consists of one or more software modules that, when loaded and executed, create
one or more components (e.g., Resources or ResourceFactories), which comprise the
application. These components use the facilities of the platform devices and services. The
software profile for an application consists of one SAD file that references (directly or indirectly)
one or more SPD, SCD, and properties (PRF) files. An SPD file contains the details of an
application’s software module that is to be loaded and executed. The SPD specifies the Device
implementation requirements for loading dependencies (processor kind, etc.) and processing
capacities (e.g., memory, process) for an application software module.

Similar to the application SAD, a device manager has an associated Device Configuration
Descriptor (DCD) file. The DCD identifies all devices and services associated with this device
manager, by referencing the associated SPDs. The DCD also defines properties of the specific
device manager, enumerates the needed connections to services (e.g., file systems), and provides
additional information on how to locate the domain manager. In addition to an SPD, a device
may have a Device Package Descriptor (DPD) file, which provides a description of the hardware
device associated with this (logical) device including description, model, manufacturer, etc.

The implementation of the Domain Manager is itself described by the DomainManager
Configuration Descriptor (DMD), which provides the location of the (SPD) file for the specific
DomainManager implementation to be loaded. It also specifies the connections to other software
components (services and devices), which are defined by the DMD.

2.2.4.1 Bus Layer (Board Support Package)

The SCA is capable of operating on commercial bus architectures. The OE supports reliable
transport mechanisms, which may include error checking and correction at the bus support level.

2.2.4.2 Network & Serial Interface Services

The SCA relies on commercial components to support multiple unique serial and network
interfaces. To support these interfaces, various low-level network protocols may be used.
Elements of waveform networking functionality may also exist at the Operating System layer.

2.2.4.3 Operating System

The SCA includes real-time embedded operating system functions (profiled by the AEP for
applications), to provide multi-threaded support for all software executing on the system,
including applications, devices, and services.

REDHAWK uses standard Linux instead of a real-time embedded operating
system. Redhat Enterprise Linux 5 is the preferred REDHAWK operating
system.

2.2.4.4 CORBA Middleware

REDHAWK uses the open-source omniORB implementation of CORBA
Middleware.

CORBA is used as the message passing technique for the distributed processing environment.
CORBA is a cross-platform framework that is used to standardize client/server operations when

SCA version 2.2.2, REDHAWK 2.3 LTS

2-7

using distributed processing. Distributed processing is a fundamental aspect of the system
architecture and CORBA is a widely used “Middleware” service for providing distributed
processing.

2.2.4.5 Applications

Applications consist of one or more resources. The Resource interface provides a common SCA
API for the control and configuration of software components. Application developers may
extend these capabilities by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. The design of a resource’s internal
functionality is not dictated by the Software Communications Architecture. This is left to the
application developer.

2.2.4.5.1 Adapters

Adapters are resources or devices used to support the use of non-CORBA capable elements
within the domain. Adapters are used in an implementation to provide the translation between
non-CORBA-capable components or devices and CORBA-capable Resources. The Adapter
concept is based on the industry-accepted Adapter design pattern [B]. Since an Adapter
implements the CF CORBA interfaces known to other CORBA-capable Resources, the
translation service is transparent to the CORBA-capable Resources. Adapters become
particularly useful to support non-CORBA-capable processing elements.

2.2.4.6 Reference Model

The SCA realizes the reference model by defining a standard unit of functionality called a
Resource. All applications are comprised of resources and using devices. Specific resources and
devices can be identified corresponding to the functional entities, but this mapping is not
identified or required by this specification.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-1

3 SOFTWARE ARCHITECTURE DEFINITION

3.1 OPERATING ENVIRONMENT

This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the SCA Operating Environment.

3.1.1 Operating System

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) is defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP is depicted in Figure 3-1: Notional Relationship of OE and
Application to the SCA AEP. The OE is not limited to providing the functions and options
designated as mandatory by the profile. Implementations of the CORBA Object Request Broker
(ORB), the CF Framework Control Interfaces, Framework Services Interfaces, and Base Device
Interfaces are not limited to using the services designated as mandatory by the SCA AEP.

Figure 3-1: Notional Relationship of OE and Application to the SCA AEP

The OE and related file systems shall support a filename length of 40 characters and a pathname
length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications perform file access through the CF. (Application requirements are covered in 3.2
Applications.)

REDHAWK applications are not limited in their use of OS services and may
directly access files through the OS operations.

3.1.2 CORBA Middleware & Services

The OE shall include middleware that, at a minimum, provides the services and capabilities of
minimum CORBA as specified by the OMG Document in reference [5].

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs

CF Interfaces

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs

CF Interfaces

SCA version 2.2.2, REDHAWK 2.2 LTS

3-2

REDHAWK uses the open-source omniNames Naming Service.

3.1.2.1 Naming Service

The OE shall provide an implementation of a CORBA Naming Service which implements the
CosNaming module NamingContext interface operations: bind, bind_new_context, unbind,
destroy, and resolve as defined in the OMG Interoperable Naming Service Specification [6].

A Naming Service’s NameComponent structure is made up of an id-and-kind pair. The “id”
element of each NameComponent is a string value that uniquely identifies a NameComponent.
The “kind” element of each NameComponent shall be “” (null string).

3.1.2.2 Log Service

REDHAWK does not provide a log service. REDHAWK applications should
use log4j, log4cxx, and python.logging for all logging needs.

An SCA compliant implementation may include a log service. If a log service is implemented,
the log service shall conform to the OMG Lightweight Log Service Specification [7].

3.1.2.2.1 Log Producers

A log producer is a CF component (e.g., DomainManager, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records using the Lightweight Log Service
CosLwLog::LogProducer interface. Log records are of type CosLwLog::ProducerLogRecord.

Log producers shall implement a configure property which is a CF Properties type with an id of
“PRODUCER_LOG_LEVEL” and a value that is a CosLwLog::LogLevelSequence. The value of
this configure property contains all log levels that are enabled. A log producer shall only output
log records that contain an enabled CosLwLog::LogLevel value. Log levels that are not in the
CosLwLog::LogLevelSequence are disabled.

Log producers and CF components that are required by this specification to write log records
shall operate normally in the absence of a log service or in the case where the connections to a
log are nil or an invalid reference.

Log producers shall use their component identifier attribute in the producerId field of the
CosLwLog::ProducerLogRecord.

3.1.2.3 CORBA Event Service and Standard Events

3.1.2.3.1 CORBA Event Service

The Event Service is optional within REDHAWK. REDHAWK uses the
open-source omniEvents Event Service.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-3

The OE shall provide an implementation of the CORBA Event Service. The Event Service shall
implement the PushConsumer and PushSupplier interfaces of the CosEventComm module as
described in OMG Event Service Specification [8] using the IDL found in that specification.

The CosEventComm CORBA Module is used by consumers for receiving events and by
producers for generating events. A component (e.g., Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm PushConsumer interface. A component
(e.g., Resource, Device, DomainManager, etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface
for generating the events. A producer component shall not forward or raise any exceptions when
the connection to a CosEventComm PushConsumer is a nil or invalid reference.

The CORBA Event Service has the capability to create event channels. An event channel allows
multiple suppliers to communicate with multiple consumers asynchronously. An event channel is
both a consumer and a producer of events. For example, event channels may be standard
CORBA objects and communicate with those channels is accomplished using standard CORBA
requests. The OE shall provide two standard event channels: Incoming Domain Management and
Outgoing Domain Management. The Incoming Domain Management Channel name shall be
"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".
The Incoming Domain Management event channel is used by components within the domain to
generate events (e.g., Device state change event) that are consumed by domain management
functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain
Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or
removals from the domain) generated from domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event
channels, the OE allows other event channels to be set up by application developers.

3.1.2.3.2 StandardEvent Module

The StandardEvent module contains type definitions that are used for passing events from event
producers to event consumers.

3.1.2.3.2.1 Types

3.1.2.3.2.1.1 StateChangeCategoryType

The type StateChangeCategoryType is an enumeration that is utilized in the
StateChangeEventType. It is used to identify the category of state change that has occurred.

3.1.2.3.2.1.2 StateChangeType

The type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is
used to identify the specific states of the event source before and after the state change occurred.

enum StateChangeCategoryType
{
 ADMINISTRATIVE_STATE_EVENT,
 OPERATIONAL_STATE_EVENT,
 USAGE_STATE_EVENT
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-4

3.1.2.3.2.1.3 StateChangeEventType

The type StateChangeEventType is a structure used to indicate that the state of the event source
has changed.

3.1.2.3.2.1.4 AbnormalComponentTerminationEventType

Type AbnormalComponentTerminationEventType is a structure used to indicate that a
Component has terminated abnormally.

3.1.2.3.2.1.5 SourceCategoryType

The type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.

enum StateChangeType
{
 LOCKED, /*Administrative State Event */
 UNLOCKED, /*Administrative State Event */
 SHUTTING_DOWN, /*Administrative State Event */
 ENABLED, /*Operational State Event */
 DISABLED, /*Operational State Event */
 IDLE, /*Usage State Event */
 ACTIVE, /*Usage State Event */
 BUSY /*Usage State Event */
};

struct StateChangeEventType
{
 string producerId;
 string sourceId;
 StateChangeCategoryType stateChangeCategory;
 StateChangeType stateChangeFrom;
 StateChangeType stateChangeTo;
};

struct AbnormalComponentTerminationEventType {
 string deviceId;
 string componentId;
 string applicationId;
};

enum SourceCategoryType
{
 DEVICE_MANAGER,
 DEVICE,
 APPLICATION_FACTORY,
 APPLICATION,
 SERVICE
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-5

3.1.2.3.2.1.6 DomainManagementObjectRemovedEventType

The type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain.

3.1.2.3.2.1.7 DomainManagementObjectAddedEventType

The type DomainManagementObjectAddedEventType is a structure used to indicate that the
event source has been added to the domain.

3.1.3 Core Framework

This section includes a detailed description of the purpose of each CF interface, the purpose of
each supported operation within the interface, and interface class diagrams to support these
descriptions.

Figure 3-2: Core Framework IDL Relationships depicts the key elements of the CF and the IDL
relationships between these elements. A DomainManager component manages the software
applications, application factories, hardware devices (represented by software devices) and
device managers within the system. Some software components may directly control the
system’s internal hardware devices; these components are logical devices, which implement the
Device, LoadableDevice, or ExecutableDevice interfaces. Other software components have no
direct relationship with a hardware device but perform application services for the user and
implement the Resource interface. This interface provides a consistent way of configuring and
tearing down these components. Each resource can potentially communicate with other
resources. An application is a specific collection of one or more resources, which provides a
specified service or function, and which is managed through the Application interface. The
resources of an application are allocated to one or more hardware devices by the application
factory based upon various factors including the current availability of hardware devices, the
behavior rules of a resource, and the loading requirements of each resource. The resources may
then be created by using the ResourceFactory interface or through the Device interfaces (Device,
LoadableDevice, or ExecutableDevice) and connected to other resources or devices resident on
the system.

struct DomainManagementObjectRemovedEventType
{
 string producerId;
 string sourceId;
 string sourceName;
 SourceCategoryType sourceCategory;
};

struct DomainManagementObjectAddedEventType
{
 string producerId;
 string sourceId;
 string sourceName;
 SourceCategoryType sourceCategory
 Object sourceIOR;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-6

Figure 3-2: Core Framework IDL Relationships

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files, and for loading and unloading application files on the various
processors that the devices execute upon.

3.1.3.1 Base Application Interfaces

Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; refer to 3.2 Applications for application requirements.

3.1.3.1.1 Port

3.1.3.1.1.1 Description

This interface provides operations for managing associations between ports. The Port interface
UML is depicted in Figure 3-3: Port Interface UML. An application defines a specific port type
by specifying an interface that inherits the Port interface. An application establishes the
operations for transferring data and control. The application also establishes the meaning of the
data and control values. Examples of how applications may use ports in different ways include:
push or pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow
control (e.g., pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

How components' ports are connected is described in the software assembly descriptor (SAD)
and the device configuration descriptor (DCD) files of the Domain Profile (refer to 3.1.3.6
Domain Profile).

SCA version 2.2.2, REDHAWK 2.2 LTS

3-7

3.1.3.1.1.2 UML

Figure 3-3: Port Interface UML

3.1.3.1.1.3 Types

3.1.3.1.1.3.1 InvalidPort

The InvalidPort exception indicates one of the following errors has occurred in the specification
of a Port association:

1. errorCode 1 means the Port component is invalid (unable to narrow object
reference) or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).

3.1.3.1.1.3.2 OccupiedPort

The OccupiedPort exception indicates the port is unable to accept any additional connections.

3.1.3.1.1.4 Attributes

N/A

3.1.3.1.1.5 Operations

3.1.3.1.1.5.1 connectPort

3.1.3.1.1.5.1.1 Brief Rationale

Applications require the connectPort operation to establish associations between ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore, two calls are
required to create a two-way association.

3.1.3.1.1.5.1.2 Synopsis

3.1.3.1.1.5.1.3 Behavior

The connectPort operation shall make a connection to the component identified by its input
parameters.

exception InvalidPort { unsigned short errorCode; string msg; };

exception OccupiedPort{};

void connectPort (in Object connection, in string connectionId)
raises (InvalidPort, OccupiedPort);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-8

A port may support several connections. The input connectionId is a unique identifier to be used
by the disconnectPort operation when breaking a specific connection.

3.1.3.1.1.5.1.4 Returns

This operation does not return a value.

3.1.3.1.1.5.1.5 Exceptions/Errors

The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort

3.1.3.1.1.5.2.1 Brief Rationale

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis

3.1.3.1.1.5.2.3 Behavior

The disconnectPort operation shall break the connection to the component identified by the input
connectionId parameter.

3.1.3.1.1.5.2.4 Returns

This operation does not return a value.

3.1.3.1.1.5.2.5 Exceptions/Errors

The disconnectPort operation shall raise the InvalidPort exception when the input connectionId
parameter is not a known connection to the Port component.

3.1.3.1.2 LifeCycle

3.1.3.1.2.1 Description

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-4: LifeCycle Interface UML.

void disconnectPort (in string connectionId) raises
(InvalidPort);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-9

3.1.3.1.2.2 UML

Figure 3-4: LifeCycle Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-10

3.1.3.1.2.3 Types

3.1.3.1.2.3.1 InitializeError

The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

3.1.3.1.2.3.2 ReleaseError

The ReleaseError exception indicates an error occurred during the component releaseObject
operation. The message is component-dependent, providing additional information describing
the reason why the error occurred.

3.1.3.1.2.4 Attributes

N/A

3.1.3.1.2.5 Operations

3.1.3.1.2.5.1 initialize

3.1.3.1.2.5.1.1 Brief Rationale

The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.

3.1.3.1.2.5.1.2 Synopsis

3.1.3.1.2.5.1.3 Behavior

Initialization behavior is implementation dependent.

3.1.3.1.2.5.1.4 Returns

This operation does not return a value.

3.1.3.1.2.5.1.5 Exceptions/Errors

The initialize operation shall raise an InitializeError exception when an initialization error
occurs.

3.1.3.1.2.5.2 releaseObject

3.1.3.1.2.5.2.1 Brief Rationale

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

3.1.3.1.2.5.2.2 Synopsis

3.1.3.1.2.5.2.3 Behavior

The releaseObject operation shall release all internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component and
release it from the CORBA environment.

exception InitializeError { StringSequence errorMessage; };

exception ReleaseError { StringSequence errorMessage; };

void initialize() raises (InitializeError);

void releaseObject() raises (ReleaseError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-11

3.1.3.1.2.5.2.4 Returns

This operation does not return a value.

3.1.3.1.2.5.2.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when a release error occurs.

3.1.3.1.3 TestableObject

3.1.3.1.3.1 Description

The TestableObject interface defines a set of operations that is used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-5: TestableObject
Interface UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-12

3.1.3.1.3.2 UML

Figure 3-5: TestableObject Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-13

3.1.3.1.3.3 Types

3.1.3.1.3.3.1 UnknownTest

The UnknownTest exception indicates the input testId parameter is not known by the component.

3.1.3.1.3.4 Attributes

N/A

3.1.3.1.3.5 Operations

3.1.3.1.3.5.1 runTest

3.1.3.1.3.5.1.1 Brief Rationale

The runTest operation allows components to be “black box” tested. This allows built-in tests
(BITs) to be implemented which provide a means to isolate faults (both software and hardware)
within the system.

3.1.3.1.3.5.1.2 Synopsis

3.1.3.1.3.5.1.3 Behavior

The runTest operation shall use the input testId parameter to determine which of its predefined
test implementations should be performed. The id/value pair(s) of the testValues parameter shall
be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testValues parameter.

Tests to be implemented by a component are component-dependent and are specified in the
component’s Properties Descriptor. Valid testId(s) and both input and output testValues
(properties) for the runTest operation shall at a minimum be the test properties defined in the
properties test element of the component's Properties Descriptor (refer to the companion Domain
Profile documentation). The testId parameter corresponds to the XML attribute testId of the
property element test in a property file.

A CF UnknownProperties exception is raised by the runTest operation. All testValues parameter
properties (i.e., test properties defined in the property file(s) referenced in the component’s SPD)
shall be validated.

The runTest operation shall not execute any testing when the input testId or any of the input
testValues are not known by the component or are out of range.

3.1.3.1.3.5.1.4 Returns

This operation does not return a value.

3.1.3.1.3.5.1.5 Exceptions/Errors

The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testId given.

The runTest operation shall raise the CF UnknownProperties exception when the input parameter
testValues contains any CF DataTypes that are not known by the component’s test
implementation or any values that are out of range for the requested test. The exception
parameter invalidProperties shall contain the invalid testValues properties id(s) that are not
known by the component or the value(s) are out of range.

exception UnknownTest{};

void runTest (in unsigned long testId, inout Properties
testValues) raises (UnknownTest, UnknownProperties);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-14

3.1.3.1.4 PortSupplier

3.1.3.1.4.1 Description

This interface provides the getPort operation for those components that provide ports. The
PortSupplier interface UML is depicted in Figure 3-6: PortSupplier Interface UML.

3.1.3.1.4.2 UML

Figure 3-6: PortSupplier Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-15

3.1.3.1.4.3 Types

3.1.3.1.4.3.1 UnknownPort

The UnknownPort exception is raised if an undefined port is requested.

3.1.3.1.4.3.2 PortInfoType

The PortInfoType defines a type for returning information about a port in the getPortSet
function.

3.1.3.1.4.3.3 PortInfoSequence

The PortInfoSequence type defines an unbounded sequence of ports' information for getPortSet
function.

3.1.3.1.4.4 Attributes

N/A

3.1.3.1.4.5 Operations

3.1.3.1.4.5.1 getPortSet

3.1.3.1.4.5.1.1 Brief Rationale

The getPortSet operation provides a mechanism to obtain information on all ports in the
Resource.

3.1.3.1.4.5.1.2 Synopsis

3.1.3.1.4.5.1.3 Behavior

The getPortSet operation returns an instance of PortInfoSequence. The return object contains
information an all ports that the Resource contains.

3.1.3.1.4.5.1.4 Returns

The getPortSet operation shall return an instance of PortInfoSequence.

3.1.3.1.4.5.1.5 Exceptions/Errors

N/A

3.1.3.1.4.5.2 getPort

3.1.3.1.4.5.2.1 Brief Rationale

The getPort operation provides a mechanism to obtain a specific consumer or producer port. A
port supplier may contain zero-to-many consumer and producer port components. The exact

exception UnknownPort{};

struct PortInfoType {
 object obj_ptr,
 string name,
 string repid,
 string description,
 string direction };

typedef sequence <PortInfoType> PortInfoSequence;

PortInfoSequence getPortSet ();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-16

number is specified in the component’s software profile SCD (refer to 3.1.3.6 Domain Profile).
Multiple input and/or output ports provide flexibility for port suppliers that manage varying
priority levels and categories of incoming and outgoing messages and provide multi-threaded
message handling or other special message processing.

3.1.3.1.4.5.2.2 Synopsis

3.1.3.1.4.5.2.3 Behavior

The getPort operation returns the object reference to the named port as stated in the component's
SCD.

3.1.3.1.4.5.2.4 Returns

The getPort operation shall return the CORBA object reference that is associated with the input
port name.

3.1.3.1.4.5.2.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port name is invalid.

3.1.3.1.5 PropertySet

3.1.3.1.5.1 Description

The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-7: PropertySet
Interface UML.

Object getPort (in string name) raises (UnknownPort);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-17

3.1.3.1.5.2 UML

Figure 3-7: PropertySet Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-18

3.1.3.1.5.3 Types

N/A

3.1.3.1.5.3.1 InvalidConfiguration

The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.

3.1.3.1.5.3.2 PartialConfiguration

The PartialConfiguration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.

3.1.3.1.5.4 Attributes

N/A

3.1.3.1.5.5 Operations

3.1.3.1.5.5.1 configure

3.1.3.1.5.5.1.1 Brief Rationale

The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

3.1.3.1.5.5.1.2 Synopsis

3.1.3.1.5.5.1.3 Behavior

The configure operation shall assign values to the properties as indicated in the input
configProperties parameter. Valid properties for the configure operation shall at a minimum be
the configure readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.1.5.5.1.4 Returns

This operation does not return a value.

3.1.3.1.5.5.1.5 Exceptions/Errors

The configure operation shall raise a PartialConfiguration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs, and no configuration properties were successfully set.

3.1.3.1.5.5.2 query

3.1.3.1.5.5.2.1 Brief Rationale

The query operation allows a component to be queried to retrieve its properties.

exception InvalidConfiguration { string msg; Properties
invalidProperties; };

exception PartialConfiguration { Properties invalidProperties;
};

void configure (in Properties configProperties) raises
(InvalidConfiguration, PartialConfiguration);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-19

3.1.3.1.5.5.2.2 Synopsis

3.1.3.1.5.5.2.3 Behavior

The query operation shall return all component properties when the inout parameter
configProperties is zero size. The query operation shall return only those id/value pairs specified
in the configProperties parameter if the parameter is not zero size. Valid properties for the query
operation shall be all configure properties (simple properties whose kind element’s kindtype
attribute is “configure”) whose mode attribute is “readwrite” or “readonly” and any allocation
properties with an action value of "external" and with a mode attribute is “readwrite” or
“readonly” as referenced in the component's SPD.

3.1.3.1.5.5.2.4 Returns

This operation does not return a value.

3.1.3.1.5.5.2.5 Exceptions/Errors

The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 PropertyEmitter

3.1.3.1.6.1 Description

The PropertyEmitter interface defines initializeProperties, registerPropertyListener, and
unregisterPropertyListener operations to set the kind properties for resources, assign values to
the properties, and register a listener object that will be notified when a resource’s arbitrary set of
properties changes value.

The PropertyEmitter interface inherits from the PropertySet interface.

The PropertyEmitter interface UML is depicted in Figure 3-8: PropertyEmitter Interface UML.

void query (inout Properties configProperties) raises
(UnknownProperties);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-20

3.1.3.1.6.2 UML

Figure 3-8: PropertyEmitter Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-21

3.1.3.1.6.3 Types

N/A

3.1.3.1.6.3.1 AlreadyInitialized

The AlreadyInitialized exception indicates the initializeProperties has already been called on this
resource.

3.1.3.1.6.4 Attributes

N/A

3.1.3.1.6.5 Operations

3.1.3.1.6.5.1 initializeProperties

3.1.3.1.6.5.1.1 Brief Rationale

The initializeProperties operation is to set the initial id/value pair property kind properties for
resources.

3.1.3.1.6.5.1.2 Synopsis

3.1.3.1.6.5.1.3 Behavior

The initializeProperties operation shall assign values to the properties as indicated in the input
initialProperties parameter. Valid properties for the initializeProperties operation shall be the
property readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.1.6.5.1.4 Returns

This operation does not return a value.

3.1.3.1.6.5.1.5 Exceptions/Errors

The initializeProperties operation shall raise an AlreadyInitialized exception when the
initializeProperties call has already been called before on this resource.

The initializeProperties operation shall raise a PartialConfiguration exception when some
properties were successfully set, and some properties were not successfully set.

The initializeProperties operation shall raise an InvalidConfiguration exception when a
configuration error occurs, and no properties were successfully set.

3.1.3.1.6.5.2 registerPropertyListener

3.1.3.1.6.5.2.1 Brief Rationale

The registerPropertyListener operation allows a listener to register for notifications when a
resource’s arbitrary set of properties changes value.

exception AlreadyInitialized {};

void initializeProperties (in Properties initialProperties)
raises (AlreadyInitialized, InvalidConfiguration,
PartialConfiguration);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-22

3.1.3.1.6.5.2.2 Synopsis

3.1.3.1.6.5.2.3 Behavior

The registerPropertyListener operation shall register a listener object that will be notified when a
resource’s arbitrary set of properties changes value. The obj argument is the reference to the
listener object. The prop_ids argument is a sequence of the property identifiers that the listener is
registering against. The interface argument is the period, in seconds, that the resource will check
the value of the properties.

3.1.3.1.6.5.2.4 Returns

This operation returns a registration id. This id can be used to unregister the listener.

3.1.3.1.6.5.2.5 Exceptions/Errors

The registerPropertyListener operation shall raise the CF UnknownProperties exception when
one or more properties being requested are not known by the component.

The registerPropertyListener operation shall raise the CF InvalidObjectReference exception
when the listener object reference passed to the component is invalid.

3.1.3.1.6.5.3 unregisterPropertyListener

3.1.3.1.6.5.3.1 Brief Rationale

The unregisterPropertyListener unregisters a property listener.

3.1.3.1.6.5.3.2 Synopsis

3.1.3.1.6.5.3.3 Behavior

The unregisterPropertyListener unregisters the property listener associated with the registration
provided. No new notifications shall be sent by the component to this registration after this
function is called. The id attribute is the registration id that was returned when this listener
registered.

3.1.3.1.6.5.3.4 Returns

This operation does not return a value.

3.1.3.1.6.5.3.5 Exceptions/Errors

The unregisterPropertyListener operation shall raise the CF InvalidIdentifier exception when the
id argument passed does not correspond to a registration id.

3.1.3.1.7 PropertyChangeListener

3.1.3.1.7.1 Description

The PropertyChangeListener interface receives notifications for a Resource when an observed
change occurs to a Resource’s proper ty. The PropertyChangeListener interface UML is
depicted in Figure 3-9: PropertyChangeListener Interface UML.

string registerPropertyListener (in Object obj, in
StringSequence prop_ids, in float interval) raises
(UnknownProperties, InvalidObjectReference);

void unregisterPropertyListener (in string id) raises
(InvalidIdentifier);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-23

3.1.3.1.7.2 UML

Figure 3-9: PropertyChangeListener Interface UML

3.1.3.1.7.3 Types

3.1.3.1.7.3.1 PropertyChangeEvent

The PropertyChangeEvent struct is used to describe a specific property change event. The evt_id
argument is a unique (usually a UUID) identifier for this event generated by the event source.
The reg_id argument is the registration id that was returned to the registrant by the event source
upon registration. The resource_id argument is the source’s unique identifier. The properties
argument is the sequence of new property values that was detected by the event source.

3.1.3.1.7.4 Attributes

N/A

3.1.3.1.7.5 Operations

3.1.3.1.7.5.1 propertyChange

3.1.3.1.7.5.1.1 Brief Rationale

The propertyChange operation is provided to inform the recipient that a property has changed.

3.1.3.1.7.5.1.2 Synopsis

3.1.3.1.7.5.1.3 Behavior

The propertyChange operation delivers the updated property information.

3.1.3.1.7.5.1.4 Returns

This operation does not return a value.

3.1.3.1.7.5.1.5 Exceptions/Errors

This operation does not raise any exceptions.

struct PropertyChangeEvent {
 string evt_id;
 string reg_id;
 string resource_id;
 CF::Properties properties;
};

void propertyChange(in PropertyChangeEvent prop_event);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-24

3.1.3.1.8 Logging Interfaces

The logging interfaces defined by REDHAWK were introduced in the 1.10 version and follow
the Cos Lightweight Logging (CosLwLog) convention. Many of these interfaces provide system
level capabilities that have not been implemented by the framework. Currently, only the
Logging interface is available from a REDHAWK resource and will make use of the language-
specific logging implementations to record specific processing state and status. The following
defines the interfaces, types and data structures that are provided as part of the interface.

3.1.3.1.8.1 Types

3.1.3.1.8.1.1 UnknownIdentifier

The UnknownIdentifier exception is raised when the identifier passed is unknown.

3.1.3.1.8.1.2 SysLogLevels

The SysLogLevels type is an interface that defines log level constant identifiers available with
CosLwLog interfaces. REDHAWK defines these levels but does not currently support their use.

3.1.3.1.8.1.3 LogLevels

The LogLevels is an interface that defines all the log level constant identifiers for a REDHAWK
resource. This interface adds levels that are directly available to the underlying language
specific logging implementations.

exception UnknownIdentifier {};

interface SysLogLevels {
 const long SECURITY_ALARM = 1;
 const long FAILURE_ALARM = 2;
 const long DEGRADED_ALARM =3;
 const long EXCEPTION_ERROR =4;
 const long FLOW_CONTROL_ERROR =5;
 const long RANGE_ERROR =6;
 const long USAGE_ERROR = 7;
 const long ADMINISTRATIVE_EVENT = 8;
 const long STATISTIC_REPORT = 9;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-25

3.1.3.1.8.1.4 LogLevel

The LogLevel type defines a logging level as defined by the LogLevels interface.

3.1.3.1.8.1.5 RecordId

Identifies individual records in a sequence that are reported from a LogProducer.

3.1.3.1.8.1.6 LogOperationalState

3.1.3.1.8.1.7 LogAdministrativeState

3.1.3.1.8.1.8 LogFullAction

3.1.3.1.8.1.9 LogTime

3.1.3.1.8.1.10 LogAvailabilityStatus

3.1.3.1.8.1.11 LogEvent

The LogEvent struct is used to describe a specific logging event. The producerId member is the
resource instance identifier. The producerName element is the canonical name for the producer.

interface LogLevels : SysLogLevels {
 const long OFF = 60000;
 const long FATAL = 50000;
 const long ERROR = 40000;
 const long WARN = 30000;
 const long INFO = 20000;
 const long DEBUG = 10000;
 const long TRACE = 5000;
 const long ALL = 0;
};

typedef long LogLevel;

typedef unsigned long long RecordId;

enum LogOperationalState { LOG_DISABLED, LOG_ENABLED};

enum LogAdministrativeState { LOG_LOCKED, LOG_UNLOCKED };

enum LogFullAction {WRAP, HALT};

struct LogTime {
 long seconds;
 long nanoseconds;
};

struct LogAvailabilityStatus{
 boolean off_duty;
 boolean log_full;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-26

The producerName_fqn is the fully-qualified name of the resource in the naming service. The
timestamp element is the epoc time since January 1, 1970 in seconds. The level element is the
logging level as defined in the LogLevels structure. The msg element is a human-readable
message related to the logging event. LogEvent objects are produced from the
RH_LogEventAppender that is incorporated into each of different logging libraries.

3.1.3.1.8.1.12 LogRecord

3.1.3.1.8.1.12.1 LogRecordSequence

The LogRecordSequence sequence is an unbounded sequence of LogRecord types.

3.1.3.1.8.1.12.2 LogEventSequence

The LogEventSequence sequence is an unbounded sequence of LogEvent types.

3.1.3.1.8.1.12.3 LogLevelSequence

The LogLevelSequence sequence is an unbounded sequence of LogLevel types.

3.1.3.1.8.1.12.4 LogConfigID

3.1.3.1.8.2 LogEventConsumer

This interface defines the basic logging event retrieval methods from a resource. A resource
maintains a queue of process logging records. This interface provides the ability to retrieve those
records.

struct LogEvent {
 string producerId;
 string produceName;
 string producerName_fqn;
 unsigned long long timeStamp;
 LogLevel level;
 string msg;
};

struct LogRecord {
 RecordId id
 LogTime time;
 LogEvent info;
};

typedef sequence<LogRecord> LogRecordSequence;

typedef sequence<LogEvent> LogEventSequence;

typedef sequence<LogLevel> LogLevelSequence;

typedef string LogConfigID;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-27

3.1.3.1.8.2.1 Operations

3.1.3.1.8.2.1.1 retrieve_records

3.1.3.1.8.2.1.1.1 Brief Rationale

Provide the ability to retrieve logging records from a resource.

3.1.3.1.8.2.1.1.2 Synopsis

3.1.3.1.8.2.1.1.3 Behavior

The set of records to be returned is restricted by the howMany and startRecord parameters.

startRecord defines the starting point for selecting records. If a zero is passed, then the retrieval
will start from the first record of available log event records.

howMany restricts the number of records to return in the LogEventSequence. If the number of
event records is less than howMany, then only those records will be returned.

3.1.3.1.8.2.1.1.4 Returns

Return a sequence of log event records from the current list of event records being maintained.

3.1.3.1.8.2.1.2 retrieve_records_by_date

3.1.3.1.8.2.1.2.1 Brief Rationale

Provide the ability to retrieve logging records from a resource using the date parameter as a filter
criterion. This interface is not currently supported.

3.1.3.1.8.2.1.2.2 Synopsis

3.1.3.1.8.2.1.2.3 Behavior

Return a sequence of log event records from the current list of event records being maintained.

The howMany and timeStamp parameters restrict the number of records returned. The actual
number of records returned will update the howMany parameter. The to_timeStamp parameter,
which represents the number of seconds since 1.1.1970, limits the records that were recorded
before the value of to_timeStamp.

howMany restricts the number of records to return in the LogEventSequence. If the number of
event records is less than howMany, then only those records will be returned.

3.1.3.1.8.2.1.2.4 Returns

Return a sequence of log event records that pass the filter criteria.

3.1.3.1.8.3 LogConfigurator

This interface allows a service to provide the logging context to a resource based on a specified
identifier.

LogEventSequence retrieve_records(inout unsigned long howMany,
in unsigned long startingRecord);

LogEventSequence retrieve_records_by_date(inout unsigned long
howMany, in unsigned long long to_timeStamp);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-28

3.1.3.1.8.3.1 Operations

3.1.3.1.8.3.1.1 getLogLevel

3.1.3.1.8.3.1.1.1 Brief Rationale

Provide the ability for a resource to request its initial logging level when establishing itself in the
domain.

3.1.3.1.8.3.1.1.2 Synopsis

3.1.3.1.8.3.1.1.3 Behavior

Get the logging level assigned to the contents the config_id parameter.

3.1.3.1.8.3.1.1.4 Returns

Return the LogLevel assigned for the config_id value.

3.1.3.1.8.3.1.1.5 Exceptions/Errors

UnknownIdentifier : If the LogConfigID value cannot be resolved to return a value.

3.1.3.1.8.3.1.2 getLogConfig

3.1.3.1.8.3.1.2.1 Brief Rationale

Provide the ability for a resource to request its logging configuration context when establishing
itself in the domain.

3.1.3.1.8.3.1.2.2 Synopsis

3.1.3.1.8.3.1.2.3 Behavior

Get the logging configuration context assigned to the contents the config_id parameter.

3.1.3.1.8.3.1.2.4 Returns

Return a URI the can be passed to the resource’s logging configuration methods.

@return string file:///path path to configuration file on local system

@return string sca://path path to configuration file on specified SCA system

@return string http://path path to configuration file via http protocol

@return string str:///string contents of configuration as string stream object

3.1.3.1.8.3.1.2.5 Exceptions/Errors

UnknownIdentifier : If the LogConfigID value cannot be resolved to return a value.

3.1.3.1.8.4 LogConfiguration

3.1.3.1.8.4.1 Description

The LogConfiguration interface is used to define the configuration level for a particular resource.
The LogConfiguration interface UML is depicted in Figure 3-10: LogConfiguration Interface
UML.

LogLevel getLogLevel(in LogConfigID config_id) raises
(CF::UnknownIdentifier);

string getLogConfig(in LogConfigID config_id) raises
(CF::UnknownIdentifier);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-29

3.1.3.1.8.4.2 UML

Figure 3-10: LogConfiguration Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-30

3.1.3.1.8.4.3 Types

N/A

3.1.3.1.8.4.4 Attributes

3.1.3.1.8.4.4.1 log_level

The log_level attribute shall contain the current logging level for a Resource instance. The
default value for this attribute is INFO.

3.1.3.1.8.4.5 Operations

3.1.3.1.8.4.5.1 setLogLevel

3.1.3.1.8.4.5.1.1 Brief Rationale

The setLogLevel operation is provided to set the logging level for the resource implementing this
interface.

3.1.3.1.8.4.5.1.2 Synopsis

3.1.3.1.8.4.5.1.3 Behavior

The setLogLevel operation sets the resource logging level.

3.1.3.1.8.4.5.1.4 Returns

This operation does not return a value.

3.1.3.1.8.4.5.1.5 Exceptions/Errors

The setLogLevel operation shall raise the UnknownIdentifier exception if the logger_id
corresponds to an unknown logger identifier.

3.1.3.1.8.4.5.2 getLogLevel

3.1.3.1.8.4.5.2.1 Brief Rationale

Provides the ability to get the logging level for the given logger.

3.1.3.1.8.4.5.2.2 Synopsis

3.1.3.1.8.4.5.2.3 Behavior

The getLogLevel operation returns the named logger’s current log level.

3.1.3.1.8.4.5.2.4 Returns

This operation returns the log level as a LogLevel type.

3.1.3.1.8.4.5.3 getLogConfig

3.1.3.1.8.4.5.3.1 Brief Rationale

The getLogConfig operation is provided to retrieve the logging configuration context as a string
object.

attribute LogLevel log_level;

void setLogLevel(in string logger_id, in LogLevel newLevel)
raises (UnknownIdentifier);

LogLevel getLogLevel (in string logger_id);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-31

3.1.3.1.8.4.5.3.2 Synopsis

3.1.3.1.8.4.5.3.3 Behavior

The getLogConfig operation retrieves the resource’s logging configuration.

3.1.3.1.8.4.5.3.4 Returns

This operation returns the logging configuration context as a string object.

3.1.3.1.8.4.5.4 setLogConfig

3.1.3.1.8.4.5.4.1 Brief Rationale

Provides the ability to change the logging configuration context for a resource at run time. The
support for this behavior is specific to the underlying logging library.

3.1.3.1.8.4.5.4.2 Synopsis

3.1.3.1.8.4.5.4.3 Behavior

The setLogConfig operation sets the resource’s logging context using the contents of the
config_context parameter as input.

3.1.3.1.8.4.5.4.4 Returns

This operation does not return a value.

3.1.3.1.8.4.5.5 setLogConfigURL

3.1.3.1.8.4.5.5.1 Brief Rationale

Provides the ability to change the logging configuration context for a resource at run time. The
support for this behavior is specific to the underlying logging library.

3.1.3.1.8.4.5.5.2 Synopsis

3.1.3.1.8.4.5.5.3 Behavior

The setLogConfigURL operation sets the resource’s logging configuration context from the URL
identified by the config_url parameter.

3.1.3.1.8.4.5.5.4 Returns

This operation does not return a value.

3.1.3.1.8.4.5.6 resetLog

3.1.3.1.8.4.5.6.1 Brief Rationale

Provides the ability to reset a resource’s loggers to the initial state when the resource was
deployed.

3.1.3.1.8.4.5.6.2 Synopsis

string getLogConfig();

void setLogConfig(in string config_contents);

void setLogConfigURL(in string config_url);

void resetLog ();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-32

3.1.3.1.8.4.5.6.3 Behavior

The resetLog operation resets the resource’s loggers to their initial state when the resource was
deployed.

3.1.3.1.8.4.5.6.4 Returns

This operation does not return a value.

3.1.3.1.8.4.5.7 getNamedLoggers

3.1.3.1.8.4.5.7.1 Brief Rationale

Provides the ability to return all the named loggers currently supported by the resource.

3.1.3.1.8.4.5.7.2 Synopsis

3.1.3.1.8.4.5.7.3 Behavior

The getNamedLoggers operation returns a list of all the named loggers currently supported by
the resource.

3.1.3.1.8.4.5.7.4 Returns

This operation returns a sequence of strings with the names of the available loggers.

3.1.3.1.8.5 Logging

3.1.3.1.8.5.1 Description

The Logging interface combines the LogConfiguration and LogEventConsumer interfaces and is
provided for a REDHAWK resource. The Logging interface UML is depicted in Figure 3-11:
Logging Interface UML.

StringSequence getNamedLoggers();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-33

3.1.3.1.8.5.2 UML

Figure 3-11: Logging Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-34

3.1.3.1.8.5.3 Types

N/A

3.1.3.1.8.5.4 Attributes

N/A

3.1.3.1.8.5.5 Operations

N/A

3.1.3.1.9 Resource

3.1.3.1.9.1 Description

The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-12: Resource Interface UML.

The Resource interface inherits from the LifeCycle, PropertyEmitter, TestableObject,
PortSupplier, and Logging interfaces.

The inherited LifeCycle, PropertyEmitter, TestableObject, PortSupplier, and Logging interface
operations are documented in their respective sections of this document.

The Resource interface may also be inherited by other application interfaces as described in the
software profile's Software Component Descriptor (SCD) file (refer to 3.1.3.6.2 Software
Component Descriptor).

SCA version 2.2.2, REDHAWK 2.2 LTS

3-35

3.1.3.1.9.2 UML

Figure 3-12: Resource Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-36

3.1.3.1.9.3 Types

3.1.3.1.9.3.1 StartError

The StartError exception indicates that an error occurred during an attempt to start the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

3.1.3.1.9.3.2 StopError

The StopError exception indicates that an error occurred during an attempt to stop the resource.
The errorNumber parameter shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

3.1.3.1.9.4 Attributes

3.1.3.1.9.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a Resource instance.

3.1.3.1.9.4.2 started

The readonly started attribute shall return the component’s started value. Note: This is an
attribute from SCA Next.

3.1.3.1.9.4.3 softwareProfile

The softwareProfile attribute contains the profile descriptor for this resource.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with an
absolute filename for the SPD file. Files referenced within the profile are obtained via the
FileManager.

3.1.3.1.9.5 Operations

3.1.3.1.9.5.1 start

3.1.3.1.9.5.1.1 Brief Rationale

The start operation is provided to command the resource implementing this interface to start
internal processing.

3.1.3.1.9.5.1.2 Synopsis

3.1.3.1.9.5.1.3 Behavior

The start operation puts the resource in an operating condition.

exception StartError { ErrorNumberType errorNumber; string msg;
};

exception StopError { ErrorNumberType errorNumber; string msg;
};

readonly attribute string identifier;

readonly attribute boolean started;

readonly attribute string softwareProfile;

void start()raises (StartError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-37

3.1.3.1.9.5.1.4 Returns

This operation does not return a value.

3.1.3.1.9.5.1.5 Exceptions/Errors

The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.9.5.2 stop

3.1.3.1.9.5.2.1 Brief Rationale

The stop operation is provided to command the resource implementing this interface to stop
internal processing.

3.1.3.1.9.5.2.2 Synopsis

3.1.3.1.9.5.2.3 Behavior

The stop operation shall disable all current operations and put the resource in a non-operating
condition. The stop operation shall not inhibit subsequent configure, query, and start operations.

3.1.3.1.9.5.2.4 Returns

This operation does not return a value.

3.1.3.1.9.5.2.5 Exceptions/Errors

The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3.1.3.1.10 ResourceFactory

The REDHAWK Core Framework does not support the use of
ResourceFactory.

3.1.3.1.10.1 Description

A resource factory is used to create and tear down a resource. The ResourceFactory interface is
designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted in
Figure 3-13: ResourceFactory Interface UML. The factory mechanism provides client-server
isolation among resources and provides a standard mechanism of obtaining a resource without
knowing its identity. An application is not required to use resource factories to obtain, create, or
tear down resources. A software profile specifies which application resource factories are to be
used by the application factory.

void stop()raises (StopError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-38

3.1.3.1.10.2 UML

Figure 3-13: ResourceFactory Interface UML

3.1.3.1.10.3 Types

3.1.3.1.10.3.1 InvalidResourceId

The InvalidResourceId exception indicates the resourceId does not reference a resource created
by this resource factory.

3.1.3.1.10.3.2 ShutdownFailure

The ShutdownFailure exception indicates that the shutdown method failed to release the resource
factory from the CORBA environment. The message is component-dependent, providing
additional information describing why the shutdown failed.

3.1.3.1.10.3.3 CreateResourceFailure

The CreateResourceFailure exception indicates that the createResource operation failed to create
the resource. The error number shall indicate a CF ErrorNumberType value. The message is
component-dependent, providing additional information describing the reason for the error.

3.1.3.1.10.4 Attributes

3.1.3.1.10.4.1 identifier

The readonly identifier attribute shall contain the unique identifier for a ResourceFactory
instance.

3.1.3.1.10.5 Operations

3.1.3.1.10.5.1 createResource

3.1.3.1.10.5.1.1 Brief Rationale

The createResource operation provides the capability to create resources in the same process
space as the resource factory or to return a reference to a resource that has already been created.
This behavior is an alternative approach to the Device::execute operation for creating a resource.

exception InvalidResourceId{};

exception ShutdownFailure { string msg; };

exception CreateResourceFailure { ErrorNumberType errorNumber;
string msg; };

readonly attribute string identifier;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-39

3.1.3.1.10.5.1.2 Synopsis

3.1.3.1.10.5.1.3 Behavior

The resourceId parameter is the identifier for a resource. The qualifiers parameter contains
values used by the resource factory in creation of the Resource. The application factory
determines the values to be supplied for the qualifiers from the description in the resource
factory’s software profile. The qualifiers may be used to identify, for example, specific subtypes
of resources created by a resource factory.

The createResource operation shall create a resource if no resource exists for the given
resourceId and shall assign the given resourceId to a new resource. If the resource already exists
for the given resourceId, the input qualifiers parameter is ignored, and the resource's reference is
returned. The createResource operation shall set a reference count to one, when the resource is
initially created, or increment the reference count by one, when the resource already exists. The
reference count is used to indicate the number of times that a specific resource reference has
been given to requesting clients. This ensures that the resource factory does not release a
resource that has a reference count greater than zero (0). When multiple clients have obtained a
reference to the same resource, each client requests release of the resource when it is through
with the resource. However, the resource is not released until the release request comes from the
last client in existence.

3.1.3.1.10.5.1.4 Returns

The createResource operation shall return a reference to the created resource. If the resource
already exists, the createResource operation shall return a reference to the existing resource.

3.1.3.1.10.5.1.5 Exceptions/Errors

The createResource operation shall raise the CreateResourceFailure exception when it cannot
create the resource.

3.1.3.1.10.5.2 releaseResource

3.1.3.1.10.5.2.1 Brief Rationale

In CORBA there is client side and server side representation of a resource. The releaseResource
operation provides the mechanism of releasing the resource in the CORBA environment on the
server side when all clients are through with a specific resource. The client still has to release its
client side reference of the resource.

3.1.3.1.10.5.2.2 Synopsis

3.1.3.1.10.5.2.3 Behavior

The releaseResource operation shall decrement the reference count for the specified resource, as
indicated by the resourceId parameter. The releaseResource operation shall release the resource
from the CORBA environment and make the resource no longer available when the resource’s
reference count is zero.

3.1.3.1.10.5.2.4 Returns

This operation does not return a value.

Resource createResource (in string resourceId, in Properties
qualifiers) raises (CreateResourceFailure);

void releaseResource (in string resourceId) raises
{InvalidResourceId);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-40

3.1.3.1.10.5.2.5 Exceptions/Errors

The releaseResource operation shall raise the InvalidResourceId exception if an invalid
resourceId is received.

3.1.3.1.10.5.3 shutdown

3.1.3.1.10.5.3.1 Brief Rationale

In CORBA there is client side and server side representation of a resource factory. The shutdown
operation provides the mechanism for releasing the resource factory from the CORBA
environment on the server side. The client has the responsibility to release its client side
reference of the resource factory.

3.1.3.1.10.5.3.2 Synopsis

3.1.3.1.10.5.3.3 Behavior

The shutdown operation shall release the resource factory from the CORBA environment and
make it unavailable to any subsequent calls to its object reference.

3.1.3.1.10.5.3.4 Returns

This operation does not return a value.

3.1.3.1.10.5.3.5 Exceptions/Errors

The shutdown operation shall raise the ShutdownFailure exception when processing errors
prevent the release of the resource factory from the CORBA environment or when all resources
have not been released from the resource factory.

3.1.3.2 Framework Control Interfaces

Framework control within a Domain is accomplished by domain management and device
management interfaces.

The management interfaces are Application, ApplicationFactory, DeviceManager and
DomainManager. These interfaces manage the registration and unregistration of applications,
devices, and device managers within the domain and the controlling of applications within the
domain. The implementation of the Application, ApplicationFactory, and DomainManager
interfaces are coupled together and are delivered together as a complete domain management
implementation and service.

Device management is accomplished by the DeviceManager interface. The device manager is
responsible for creation of logical devices and launching service applications on these logical
devices.

3.1.3.2.1 Application

3.1.3.2.1.1 Description

The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface inherits the IDL interface of Resource. A created application instance
may contain Resource components and/or non-CORBA components. The Application interface
UML is depicted in Figure 3-14: Application Interface UML.

void shutdown() raises {ShutdownFailure);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-41

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

3.1.3.2.1.2 UML

Figure 3-14: Application Interface UML

3.1.3.2.1.3 Types

3.1.3.2.1.3.1 ComponentProcessIdType

The ComponentProcessIdType defines a type for associating a component with its process ID.

struct ComponentProcessIdType
{
 string componentId;
 unsigned long processId;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-42

3.1.3.2.1.3.2 ComponentProcessIdSequence

The ComponentProcessIdSequence type defines an unbounded sequence of components’ process
IDs.

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines a type for associating a component with an element (e.g.,
naming context, implementation ID).

3.1.3.2.1.3.4 ComponentElementSequence

The ComponentElementSequence defines an unbounded sequence of ComponentElementType.

3.1.3.2.1.3.5 PortType

The PortType structure defines a port. The portName field is the name of the port. The port
field is object reference of the port. Note: this is a type from SCA Next.

3.1.3.2.1.3.6 Ports

The Ports type defines a name/value sequence of PortType structures. Note: This is a type from
SCA Next.

typedef sequence <ComponentProcessIdType>
ComponentProcessIdSequence;

struct ComponentElementType
{
 string componentId;
 string elementId;
};

typedef sequence <ComponentElementType>
ComponentElementSequence;

struct PortType {

 string portName;
 Object port;
};

typedef sequence <PortType> Ports;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-43

3.1.3.2.1.3.7 InvalidMetric

The InvalidMetric exception is raised if an invalid metric or a valid metric on an invalid
component name is requested.

3.1.3.2.1.3.8 ComponentEnumType

The ComponentEnumType enumeration defines the basic type of a component. The
APPLICATION_COMPONENT field is a component which is launched as part of a Software
Assembly. The DEVICE_COMPONENT field is a Device launched by a Device Manager. The
CF_SERVICE_COMPONENT field is a Service launched by a Device Manager that the
Framework can manage through the CF based interfaces. The
NON_CF_SERVICE_COMPONENT is a Service launched by a Device Manager that could
implement possibly any interface (e.g. Log, FileSystem, etc.). The
FRAMEWORK_COMPONENT is a Device Manager, Domain Manager, Application, or
Application Factory. Note: This is a type from SCA Next.

3.1.3.2.1.3.9 ComponentType

The ComponentType structure defines the basic elements of a component. The identifier field is
the id of the component as specified through execparams. The softwareProfile field is either the
component’s SPD filename or the SPD itself. The type field is the type of component. The
componentObject field is the object reference of the component. The providesPorts field is a
sequence of static ports provided by the Component. Note: This is a type from SCA Next.

3.1.3.2.1.3.10 Components

The Components type defines a sequence of ComponentType structures. Note: This is a type
from SCA Next.

exception InvalidMetric{
 StringSequence components;
 StringSequence attributes};

enum ComponentEnumType {
 APPLICATION_COMPONENT,
 DEVICE_COMPONENT,
 CF_SERVICE_COMPONENT,
 NON_CF_SERVICE_COMPONENT,
 FRAMEWORK_COMPONENT};

struct ComponentType {
 string identifier;
 string softwareProfile;
 ComponentEnumType type;
 Object componentObject;
 Ports providesPorts;};

typedef sequence <ComponentType> Components;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-44

3.1.3.2.1.4 Attributes

3.1.3.2.1.4.1 profile

The readonly profile attribute shall contain a profile element (Profile Descriptor) with a file
reference to the application’s SAD file. Files referenced within the profile are obtained via a
FileManager.

REDHAWK does not return a profile element. It returns an absolute filename.

3.1.3.2.1.4.2 name

This readonly name attribute shall contain the name of the created application. The
ApplicationFactory interface’s create operation name parameter provides the name content.

3.1.3.2.1.4.3 componentNamingContexts

The componentNamingContexts attribute shall contain the list of components’ Naming Service
Context within the application for those components using CORBA Naming Service.

3.1.3.2.1.4.4 componentProcessIds

The componentProcessIds attribute shall contain the list of components’ process IDs within the
Application for components that are executing on a device.

3.1.3.2.1.4.5 componentDevices

The componentDevices attribute shall contain a list of devices, which each component either
uses, is loaded on or is executed on. Each component (identified by the componentinstantiation
element in the application’s software profile) is associated with at least one device.

3.1.3.2.1.4.6 componentImplementations

The componentImplementations attribute shall contain the list of components’ SPD
implementation IDs within the application for those components created.

readonly attribute string profile;

readonly attribute string name;

readonly attribute ComponentElementSequence
componentNamingContexts;

readonly attribute ComponentProcessIdSequence
componentProcessIds;

readonly attribute DeviceAssignmentSequence componentDevices;

readonly attribute ComponentElementSequence
componentImplementations;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-45

3.1.3.2.1.4.7 appReg

The readonly appReg attribute shall contain the reference to the ApplicationRegistrar that is used
by Components hosted by this Application to register themselves onto the Application upon
deployment.
readonly attribute ApplicationRegistrar appReg;

3.1.3.2.1.4.8 aware

The readonly aware attribute contains the aware state of the Application. This attribute shows
whether the Components in the Application are given a pointer to the Application and Domain
Manager.

3.1.3.2.1.4.9 stopTimeout

The read/write stopTimeout attribute describes how long a call to CF::Resource stop will wait, in
seconds, until timing out when delegating the CF::Application stop call. This value does not
apply when CF::Application releaseObject is being processed. The default value for the timeout
is 3 seconds.

3.1.3.2.1.4.10 registeredComponents

The readonly registeredComponents attribute contains the list of application Components that
have registered with this Application. Note: this is an attribute from SCA Next.

3.1.3.2.1.5 General Class Behavior

The application shall delegate the implementation of the inherited Resource operations (runTest,
start, stop, configure, and query) to the Application Resource component identified by the
application’s SAD assemblycontroller element (Assembly Controller). The application shall
propagate exceptions raised by the application’s Assembly Controller’s operations. The
initialize operation shall not be propagated to the application’s components or its Assembly
Controller.

3.1.3.2.1.6 Operations

3.1.3.2.1.6.1 releaseObject

3.1.3.2.1.6.1.1 Brief Rationale

The releaseObject operation terminates execution of the application, returns all allocated
computing resources, and de-allocates the resources’ capacities in use by the devices associated
with the application. Before terminating, the application removes the message connectivity with
its associated applications (e.g., ports, resources, and logs) in the domain.

As a first step in the application release process, the Application object calls
stop() on itself.

readonly attribute boolean aware;

attribute float stopTimeout;

readonly attribute Components registeredComponents;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-46

3.1.3.2.1.6.1.2 Synopsis

3.1.3.2.1.6.1.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The Application::releaseObject operation shall release each application component not created
by a resource factory by utilizing the component’s Resource::releaseObject operation. The
Application::releaseObject operation shall release each component created by a resource factory
via the ResourceFactory::releaseResource operation. The Application::releaseObject operation
shall terminate a resource factory when no more resources are managed by the resource factory
via the ResourceFactory::shutdown operation. The Application::releaseObject operation shall
terminate the processes / tasks on allocated executable devices belonging to each application
component by utilizing the ExecutableDevice:terminate operation.

The releaseObject operation shall de-allocate the memory associated with each application
component instance from its allocated device by utilizing the LoadableDevice::unload operation.

The releaseObject operation shall deallocate the device capacities that were allocated during
application creation. The actual devices deallocated (Device::deallocateCapacity) reflect
changes in their capacity based upon component capacity requirements deallocated from them,
which may also cause state changes for the devices.

The application shall release all object references to the components making up the application.

The releaseObject operation shall disconnect ports that were previously connected based upon
the application’s software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event
Service’s event channel based upon the software profile. The releaseObject operation may
destroy a CORBA Event Service’s event channel when no more consumers and producers are
connected to it.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming
contexts as necessary from the Naming Service.

The releaseObject operation for an application shall disconnect ports first, then release the
resources and the resource factories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful application release, write a
FAILURE_ALARM log record.

The releaseObject operation shall send a DomainManagementObjectRemovedEventType event
to the Outgoing Domain Management event channel upon successful release of an application.
For this event:

1. The producerId is the identifier attribute of the released application.

2. The sourceId is the identifier attribute of the released application.

3. The sourceName is the name attribute of the released application.

4. The sourceCategory is “APPLICATION”.

void releaseObject() raises (ReleaseError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-47

The following steps demonstrate one scenario of the application’s behavior for the release of an
application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ResourceFactory components.

4. Shutdown the ResourceFactory components.

5. Release the Resource components.

6. Terminate the components’ processes.

7. Unload the components’ executable images.

8. Change the state of the associated devices to be available, along with device(s)
memory utilization availability and processor utilization availability based upon
the Device Profile and software profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the application was either successfully or
unsuccessfully released.

11. Remove the application reference from the applications attribute and generate an
event to indicate the application has been removed from the domain.

Figure 3-15: Application Behavior is a collaboration diagram depicting the behavior as
described above.

Figure 3-15: Application Behavior

SCA version 2.2.2, REDHAWK 2.2 LTS

3-48

3.1.3.2.1.6.1.4 Returns

This operation does not return a value.

3.1.3.2.1.6.1.5 Exceptions/Errors

The releaseObject operation shall raise a ReleaseError exception when internal processing errors
prevent the successful release of any application component.

3.1.3.2.1.6.2 getPort

3.1.3.2.1.6.2.1 Brief Rationale

The getPort operation obtains an object reference to a specific visible port of the application.

3.1.3.2.1.6.2.2 Synopsis

3.1.3.2.1.6.2.3 Behavior

The getPort operation returns object references for port names that are in the application SAD
externalports element.

3.1.3.2.1.6.2.4 Returns

The getPort operation shall return object references only for input port names that match the port
names that are in the application SAD externalports element.

3.1.3.2.1.6.2.5 Exceptions/Errors

The getPort operation shall raise an UnknownPort exception if the port is invalid.

3.1.3.2.1.6.3 metrics

3.1.3.2.1.6.3.1 Brief Rationale

The metrics operation returns resource usage metrics that can be used for establishing reservation
levels at future deployments.

3.1.3.2.1.6.3.2 Synopsis

3.1.3.2.1.6.3.3 Behavior

The metrics operation returns resource usage metrics for individual components as well as
aggregated for all components in the application.

3.1.3.2.1.6.3.4 Returns

The metrics operation shall return the metrics requested in the attributes argument for all
components named in the components argument. Examples of attributes are “cores” or
“memory”. The components argument is the component name used in the software assembly
descriptor. Passing “application utilization” as a named component provides the aggregate
consumption for all components. Using a zero-length list for the attributes argument returns all
metrics for the requested components. Using a zero-length list for the components arguments
returns the requested metrics for all components, including the aggregated application usage.

Using a zero-length list for both arguments returns all measured values for all components,
including the aggregated application usage.

Object getPort (in string name) raises (UnknownPort);

Properties metrics (in StringSequence components, in
StringSequence attributes) raises (UnknownPort);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-49

3.1.3.2.1.6.3.5 Exceptions/Errors

The metrics operation shall raise an InvalidMetric exception if either the attributes requested or
the components requested are invalid.

3.1.3.2.2 ApplicationFactory

3.1.3.2.2.1 Description

 The ApplicationFactory interface class provides an interface to request the creation of a specific
type of application in the domain. The ApplicationFactory interface UML is depicted in Figure
3-16: ApplicationFactory UML.

The ApplicationFactory interface class is designed using the factory design pattern. The software
profile descriptor references a Software Assembly Descriptor file that determines the type of
application that is created by the application factory.

3.1.3.2.2.2 UML

Figure 3-16: ApplicationFactory UML

3.1.3.2.2.3 Types

3.1.3.2.2.3.1 CreateApplicationRequestError Exception

The CreateApplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one or more invalid application component-to-device
assignment(s).

3.1.3.2.2.3.2 CreateApplicationError Exception

The CreateApplicationError exception is raised when a create request is valid but the application
is unsuccessfully instantiated due to internal processing errors. The error number shall indicate a
CF ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.

exception CreateApplicationRequestError {
 DeviceAssignmentSequence invalidAssignment;
};

exception CreateApplicationError {
 ErrorNumberType errorNumber;
 string msg;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-50

3.1.3.2.2.3.3 Exception InvalidInitConfiguration

The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is
invalid.

3.1.3.2.2.4 Attributes

3.1.3.2.2.4.1 name

The readonly name attribute contains the user-friendly name of the application instantiated by an
application factory. The name attribute shall be identical to the softwareassembly element name
attribute of the application’s Software Assembly Descriptor file.

3.1.3.2.2.4.2 softwareProfile

The softwareProfile attribute contains the Profile Descriptor for the application that is created by
the application factory.

The readonly softwareProfile attribute shall contain a profile element (Profile Descriptor) with a
file reference to the application’s SAD file. Files referenced within the profile are obtained via
FileManager.

REDHAWK does not return a profile element. It returns an absolute filename.

3.1.3.2.2.4.3 identifier

The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory
instance. The identifier shall be identical to the softwareassembly element id attribute of the
application factory’s Software Assembly Descriptor file.

3.1.3.2.2.5 Operations

3.1.3.2.2.5.1 create

3.1.3.2.2.5.1.1 Brief Rationale

The create operation is used to create an application within the system domain.

The create operation provides a client interface to request the creation of an application on client
requested device(s) and/or the creation of an application in which the application factory
determines the necessary device(s) required for instantiation of the application.

exception InvalidInitConfiguration {
 Properties invalidProperties;
};

readonly attribute string name;

readonly attribute string softwareProfile;

readonly attribute string identifier;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-51

3.1.3.2.2.5.1.2 Synopsis

3.1.3.2.2.5.1.3 Behavior

The create operation shall use the SPD implementation element to locate candidate devices
capable of loading and executing application software modules.

The create operation validates all component-device associations in the input deviceAssignments
parameter by verifying that the device indicated by the assignedDeviceId element provides the
necessary capacities and properties required by the component indicated by the componentId
element. Device assignments should not be given for resources created via a resource factory
since instantiation of these Resources is controlled by the creating ResourceFactory.

The create operation shall perform the comparison of allocation properties of the application to
those of each candidate device, according to the allocation property’s action element, for those
application component properties whose kindtype is allocation and whose action element is not
external.

The create operation shall use the Device’s allocateCapacity operation to perform the
comparison of allocation properties of the application to those of each candidate device for those
application component properties whose kindtype is allocation and whose action element is
external.

The create operation shall deallocate any capacity allocations on devices that do not satisfy the
application components allocation requirements or that are not utilized due to an unsuccessful
application creation.

The create operation shall load application modules onto devices that have been granted
successful capacity allocations and that satisfy the application components allocation
requirements.

The create operation shall execute the application software modules as specified in the
application’s Software Assembly Descriptor (SAD) file. The create operation shall use each
software module’s SPD implementation code’s stack size and priority elements, when specified,
for the execute options parameters.

The create operation shall include the mandatory execute parameters Naming Context IOR,
Name Binding, and Component Identifier, as described in this section, in the parameters
parameter of the ExecutableDevice::execute operation when the CORBA instance’s
componentinstantiation element of the SAD contains a findcomponent element with a
namingservice sub-element.

REDHAWK includes two additional execute parameters: DEBUG_LEVEL
and LOGGING_CONFIG_URI.

The execute parameter for the Naming Context IOR shall be a CF Properties type with an id
element set to "NAMING_CONTEXT_IOR" and a value element set to the stringified IOR of
the naming context to which the component will bind. The create operation shall create any

Application create (in string name, in Properties
initConfiguration, in DeviceAssignmentSequence
deviceAssignments) raises (CreateApplicationError,
CreateApplicationRequestError, InvalidInitConfiguration);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-52

naming contexts that do not exist but which are required for successful binding to the Naming
Context IOR. The structure of the naming context path shall be "/ DomainName / [optional
naming context sequences]". In the naming context path, each "slash" (/) represents a separate
naming context.

The REDHAWK Application Factory creates a naming context under the
Domain’s naming context with the following format:
<waveform_name>_<instance number>, where instance_number is a
monotonically increasing number. All waveform components are bound to that
context.

The Name Binding execute parameter shall be a CF Properties type with an id element set to
"NAME_BINDING" and a value element set to a string in the format of
"ComponentName_UniqueIdentifier". The ComponentName value is the SAD
componentinstantiation findcomponent namingservice element’s name attribute. The
UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by
the component to bind its object reference to the Naming Context IOR parameter.

The Component Identifier execute parameter shall be a CF Properties type with an id element set
to "COMPONENT_IDENTIFIER" and a value element set to a string in the format of
“Component_Instantiation_Identifier: Application_Name”. The
Component_Instantiation_Identifier is the componentinstantiation element id attribute for the
component in the application’s SAD file. The Application_Name field shall be identical to the
create operation’s input name parameter. The Application_Name field provides a specific
instance qualifier for executed components.

Application_Name in the identifier is modified to
Application_Name_<instance_number>.

The create operation shall pass the values of the “execparam” properties of the
componentinstantiation componentproperties element contained in the SAD, as parameters to the
execute operation. The create operation passes “execparam” parameters values as string values.

Upon execution of a software module by the create operation, a Resource or a ResourceFactory
component shall register with the Naming Service. The create operation uses
"ComponentName_UniqueIdentifier" to retrieve the component’s CORBA object reference from
the Naming Context IOR.

The create operation obtains a resource in accordance with the SAD via the CORBA Naming
Service or a resource factory. The ResourceFactory object reference is obtained by using the
CORBA Naming Service. The create operation, when creating a resource from a resource
factory, shall pass the componentinstantiation componentresourcefactoryref element properties
whose kindtype element is factoryparam as the qualifiers parameter to the referenced
ResourceFactory component’s createResource operation.

The create operation shall, in order, configure all properties of type “property”,
initialize all application resources, then establish connections for those resources,
and finally configure the application component indicated by the

SCA version 2.2.2, REDHAWK 2.2 LTS

3-53

assemblycontroller element in the SAD. The create operation connects the ports
of the application resources with the ports of other resources within the
application as well as the devices and services they use in accordance with the
SAD.

The create operation shall establish connections for an application which are specified in the
SAD domainfinder element. The create operation obtains object references to the required Port
interfaces in via PortSupplier::getPort operation. The create operation uses the SAD
connectinterface element id attribute as the unique identifier for a specific connection when
provided. The create operation creates a connection id when no SAD connectinterface element
id attribute is specified for a connection. For connections to an event channel, the create
operation shall connect a CosEventComm::PushConsumer or CosEventComm::PushSupplier
object to the event channel as specified in the SAD's domainfinder element. The create operation
shall create the specified event channel if the event channel does not exist.

The create operation shall configure the application component indicated by the
assemblycontroller element in the SAD if that component has properties with a kindtype of
“configure” or “property” and a mode of “readwrite” or “writeonly”. The create operation shall
use the union of the properties contained in the input initConfiguration parameter of the create
operation and the assembly controller’s componentinstantiation element properties with a
kindtype of “configure” or “property” and a mode of “readwrite” or “writeonly”. Values
contained in the input initConfiguration parameter shall have precedence over the values of the
assembly controller’s componentinstantiation element properties when they reference the same
property.

The TestableObject::runTest operation (refer to 3.1.3.1.3.5.1 runTest), Resource::stop operation
(3.1.3.1.9.5.2 stop), and Resource::start operation (3.1.3.1.9.5.1 start) are not called at start-up.

The create operation shall return an Application object reference for the created application
when the application is successfully created.

The create operation shall, upon successful application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful application creation, write a FAILURE_ALARM
log record.

The create operation shall send a DomainManagementObjectAddedEventType event to the
Outgoing Domain Management event channel upon successful creation of an application. For
this event:

1. The producerId is the identifier attribute of the application factory.

2. The sourceId is the identifier attribute of the created application.

3. The sourceName is the name attribute of the created application.

4. The sourceIOR is the object reference for the created application.

5. The sourceCategory is “APPLICATION”.

The following steps demonstrate one scenario of the behavior of an application factory for the
creation of an application:

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available devices that meet the application’s
memory and processor requirements, available dependent applications, and

SCA version 2.2.2, REDHAWK 2.2 LTS

3-54

dependent libraries needed by the application. Create an instance of an
Application, if the requested application can be created. Update the memory and
processor utilization of the devices.

3. Allocate the device(s) memory and processor utilization.

4. Load the application software modules on the devices using the appropriate
Device(s) interface provided the application software modules haven’t already
been loaded.

5. Execute the application software modules on the devices using the appropriate
Device interface as indicated by the application’s software profile.

6. Obtain the object reference (Resource or ResourceFactory) as described by the
SAD.

7. If the component obtained from the CORBA Naming Service is a resource factory
as indicated by the SAD, then narrow the object reference to be a
ResourceFactory component.

8. If the component is a ResourceFactory, then create a resource using the
ResourceFactory interface.

9. If the component obtained from the Application Registrar is a resource supporting
the Resource interface as indicated by the SCDs, then narrow the component
reference to be a Resource component.

10. For each resource component, call the initializeProperties method. Properties of
type “property” are configured in this call.

11. Initialize the resource. While servicing the initialize call, the method named
constructor is called on the component.

12. Get Port object references for the resources.

13. Connect the ports that interconnect the resources’ ports together.

14. Configure the assemblycontroller component using the Resource interface.

15. Return the Application object reference and log message.

16. Generate an event to indicate the application has been added to the domain.

Figure 3-17: ApplicationFactory Behavior is a collaboration diagram depicting the behavior as
described above.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-55

Figure 3-17: ApplicationFactory Behavior

3.1.3.2.2.5.1.4 Returns

The create operation returns a duplicated Application reference for the created application.

3.1.3.2.2.5.1.5 Exceptions/Errors

The create operation shall raise the CreateApplicationRequestError exception when the input CF
DeviceAssignmentSequence parameter contains one or more invalid application component to
device assignment(s).

The create operation shall raise the CreateApplicationError exception when the create request is
valid but the application cannot be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input
initConfiguration parameter is invalid. The InvalidInitConfiguration invalidProperties parameter
shall identify the invalid properties.

3.1.3.2.3 DomainManager

3.1.3.2.3.1 Description

The DomainManager interface is for the control and configuration of the system domain.

The DomainManager interface operations may be logically grouped into three categories:
Human Computer Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (devices,
services, and applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the domain manager.

The registration operations are used to register / unregister device managers, device manager’s
devices, device manager’s services, and applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-56

The administration operations are used to access the interfaces of registered device managers and
domain manager's file manager. The DomainManager Interface UML is depicted in Figure 3-18:
DomainManager Interface UML.

3.1.3.2.3.2 UML

Figure 3-18: DomainManager Interface UML

3.1.3.2.3.3 Types

3.1.3.2.3.3.1 ApplicationInstallationError

The ApplicationInstallationError exception type is raised when an application installation has not
completed correctly. The error number shall indicate a CF ErrorNumberType value. The

SCA version 2.2.2, REDHAWK 2.2 LTS

3-57

message is component-dependent, providing additional information describing the reason for the
error.

3.1.3.2.3.3.2 InvalidIdentifier

The InvalidIdentifier exception indicates an application identifier is invalid.

3.1.3.2.3.3.3 DeviceManagerNotRegistered Exception

The DeviceManagerNotRegistered exception indicates the registering device’s device manager is
not registered in the domain manager. A device’s device manager must be registered prior to
device registration to the domain manager.

3.1.3.2.3.3.4 RegisterError

The RegisterError exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The error number shall
indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.

3.1.3.2.3.3.5 UnregisterError

The UnregisterError exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The error number shall
indicate a CF ErrorNumberType value. The message is component-dependent, providing
additional information describing the reason for the error.

3.1.3.2.3.3.6 ApplicationUninstallationError

The ApplicationUninstallationError exception type is raised when the uninstallation of an
application has not completed correctly. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

3.1.3.2.3.3.7 InvalidEventChannelName

The InvalidEventChannelName exception indicates that a domain manager was not able to locate
the event channel.

3.1.3.2.3.3.8 AlreadyConnected

The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.

exception ApplicationInstallationError { ErrorNumberType
errorNumber; string msg; };

exception InvalidIdentifier{};

exception DeviceManagerNotRegistered{};

exception RegisterError { ErrorNumberType errorNumber; string
msg; };

exception UnregisterError { ErrorNumberType errorNumber; string
msg; };

exception ApplicationUninstallationError { ErrorNumberType
errorNumber; string msg; };

exception InvalidEventChannelName{};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-58

3.1.3.2.3.3.9 NotConnected

The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.

3.1.3.2.3.3.10 ApplicationAlreadyInstalled

The ApplicationAlreadyInstalled exception indicates that the application being installed is
already installed.

3.1.3.2.3.3.11 DeviceManagerSequence

This type defines an unbounded sequence of DeviceManager(s).

3.1.3.2.3.3.12 DomainManagerSequence

This type defines an unbounded sequence of DomainManager(s).

3.1.3.2.3.3.13 ApplicationSequence

This type defines an unbounded sequence of Application(s).

3.1.3.2.3.3.14 ApplicationFactorySequence

This type defines an unbounded sequence of ApplicationFactory(s).

3.1.3.2.3.4 Attributes

3.1.3.2.3.4.1 deviceManagers

The deviceManagers attribute is read-only containing a sequence of registered device managers
in the domain. The readonly deviceManagers attribute shall contain a list of registered device
managers that have registered with the domain manager. The domain manager shall write an
ADMINISTRATIVE_EVENT log to a domain manager’s log, when the deviceManagers
attribute is obtained by a client.

3.1.3.2.3.4.2 applications

The applications attribute is read-only containing a sequence of instantiated Applications in the
domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The domain manager shall write an ADMINISTRATIVE_EVENT log record to a
domain manager’s log, when the application’s attribute is obtained by a client.

exception AlreadyConnected{};

exception NotConnected{};

exception ApplicationAlreadyInstalled{};

typedef sequence <DeviceManager> DeviceManagerSequence

typedef sequence <DomainManager> DomainManagerSequence

typedef sequence < Application> ApplicationSequence

typedef sequence < ApplicationFactory>
ApplicationFactorySequence

readonly attribute DeviceManagerSequence deviceManagers;

readonly attribute ApplicationSequence applications;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-59

3.1.3.2.3.4.3 applicationFactories

The readonly applicationFactories attribute shall contain a list with one application factory per
application (SAD file and associated files) successfully installed (i.e., no exception raised). The
domain manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s
log, when the applicationFactories attribute is obtained by a client.

3.1.3.2.3.4.4 fileMgr

The readonly fileMgr attribute shall contain the domain manager file manager. The domain
manager shall write an ADMINISTRATIVE_EVENT log record to a domain manager’s log,
when the fileMgr attribute is obtained by a client.

3.1.3.2.3.4.5 allocationMgr

The readonly allocationMgr attribute shall contain the allocation manager.

3.1.3.2.3.4.6 name

The readonly name attribute shall contain the domain manager name.

3.1.3.2.3.4.7 domainManagerProfile

The domainManagerProfile attribute contains the domain manager’s Profile Descriptor.

The readonly domainManagerProfile attribute shall contain a profile element (Profile Descriptor)
with a file reference to the DomainManager Configuration Descriptor (DMD) file. Files
referenced within the profile are obtained via the domain manager’s FileManager.

REDHAWK does not return a profile element. It returns an absolute filename.

3.1.3.2.3.4.8 identifier

The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.
The identifier shall be identical to the domainmanagerconfiguration element id attribute of the
domain manager’s Descriptor (DMD) file.

3.1.3.2.3.4.9 connectionMgr

The readonly connectionMgr attribute shall contain the connection manager.

readonly attribute ApplicationFactorySequence
applicationFactories;

readonly attribute FileManager fileMgr;

readonly attribute AllocationManager allocationMgr;

readonly attribute string name;

readonly attribute string domainManagerProfile;

readonly attribute string identifier;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-60

3.1.3.2.3.4.10 eventChannelMgr

The readonly eventChannelMgr attribute shall contain the event channel manager.

3.1.3.2.3.4.11 remoteDomainManagers

The readonly eventChannelMgr attribute shall contain the event channel manager.

3.1.3.2.3.5 General Class Behavior

The domain manager shall register itself with the CORBA Naming Service during component
construction. The domain manager shall create a naming context using "/DomainName" as the id
attribute to the input name parameter, and "" (Null string) as the kind attribute. The domain
manager shall create a name binding to the created naming context using "/DomainName" as the
id attribute to the input name parameter, and "" (Null string) as the kind attribute, where
DomainName is identical to the name attribute of the domain manager’s DMD
domainmanagerconfiguration element and the input object parameter is the domain manager
object reference. [6]

Since a log service is not a required component, a domain manager implementation may, or may
not have access to a log. However, if log service(s) are available, a DomainManager
implementation may use one or more of them. The logs utilized by the DomainManager
implementation shall be defined in the DMD.

The domain manager shall begin to use a service specified in the DMD once the service is
successfully registered with the domain manager via the registerDeviceManager or
registerService operations.

The domain manager shall create its own FileManager component that consists of all registered
device manager’s FileSystems.

The Domain Manager’s FileManager “/” corresponds to the local host’s
$SDRROOT/dom.

Upon system startup, the domain manager shall restore application factories for applications that
were previously installed by the DomainManager::installApplication operation. The domain
manager shall add the restored application factories to the DomainManager applicationFactories
attribute.

The domain manager shall create the Incoming Domain Management and Outgoing Domain
Management event channels.

readonly attribute ConnectionManager connectionMgr;

readonly attribute EventChannelManager eventChannelMgr;

readonly attribute DomainManagerSequence remoteDomainManagers;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-61

3.1.3.2.3.6 Operations

3.1.3.2.3.6.1 registerDeviceManager

3.1.3.2.3.6.1.1 Brief Rationale

The registerDeviceManager operation is used to register a device manager, its device(s), and its
services. Software profiles may be obtained from the device manager's FileSystem.

3.1.3.2.3.6.1.2 Synopsis

3.1.3.2.3.6.1.3 Behavior

The registerDeviceManager operation verifies that the input deviceMgr parameter is a not a nil
CORBA object reference.

The registerDeviceManager operation shall add the device manager indicated by the input
deviceMgr parameter to the DomainManager deviceManagers attribute, if it does not already
exist. The registerDeviceManager operation shall add the input device manager’s registered
devices and each registered device’s attributes (e.g., identifier, softwareProfile, allocation
properties, etc.) to the domain manager. The domain manager associates the input device
manager’s registered devices with the device manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall add all the services contained in the registering
device manager’s registeredServices attribute to the domain manager. The
registerDeviceManager operation associates the device manager indicated by the input
deviceMgr parameter with its registered services in the domain manager in order to support the
unregisterDeviceManager operation.

The registerDeviceManager operation shall register the new device manager indicated by the
input deviceMgr parameter, when the previously registered device manager has the same
identifier attribute as the new device manager and the reference to the registered device manager
refers to a nonexistent object.

The registerDeviceManager operation shall write an ADMINISTRATIVE_EVENT log record
when reference to the registered device manager refers to a nonexistent object.

The registerDeviceManager operation shall establish any connections for the device manager
indicated by the input deviceMgr parameter, which are specified in the connections element of
the device manager’s Device Configuration Descriptor (DCD) file, that are possible with the
current set of registered devices and services. Connections not currently possible are left
unconnected pending future device / service registrations.

For connections established for a CORBA Event Service’s event channel, the
registerDeviceManager operation shall connect a CosEventComm::PushConsumer or
CosEventComm::PushSupplier object to the event channel as specified in the DCD’s
domainfinder element. If the event channel does not exist, the registerDeviceManager operation
shall create the event channel.

The registerDeviceManager operation shall obtain all the software profiles from the registering
device manager's file systems.

The registerDeviceManager operation shall mount the device manager's file system to the
domain manager’s file manager. The mounted FileSystem name shall have the format,

void registerDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, InvalidProfile, RegisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-62

“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful device manager registration,
write a FAILURE_ALARM log record to a domain manager’s Log.

The registerDeviceManager operation shall send a DomainManagementObjectAddedEventType
event to the Outgoing Domain Management event channel upon successful registration of a
device manager. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device manager.

3. The sourceName is the label attribute of the registered device manager.

4. The sourceIOR is the object reference for the registered device manager.

5. The sourceCategory is “DEVICE_MANAGER”.

The following UML sequence diagram (Figure 3-19: DomainManager Sequence Diagram for
registerDeviceManager Operation) illustrates the domain manager’s behavior for the
registerDeviceManager operation.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-63

Figure 3-19: DomainManager Sequence Diagram for registerDeviceManager Operation

3.1.3.2.3.6.1.4 Returns

This operation does not return a value.

3.1.3.2.3.6.1.5 Exceptions/Errors

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-64

The registerDeviceManager operation shall raise the CF InvalidProfile exception when the
device manager’s DCD file and the DCD’s referenced files do not exist.

The registerDeviceManager operation shall raise the RegisterError exception when an internal
error exists which causes an unsuccessful registration.

The registerDeviceManager operation shall raise the RegisterError exception and not register a
new device manager when that device manager, indicated by the input deviceMgr parameter, has
the same identifier attribute as a previously registered device manager and the reference to the
registered device manager refers to an existing object.

3.1.3.2.3.6.2 registerDevice

3.1.3.2.3.6.2.1 Brief Rationale

The registerDevice operation is used to register a device for a specific device manager with the
domain manager.

3.1.3.2.3.6.2.2 Synopsis

3.1.3.2.3.6.2.3 Behavior

The registerDevice operation shall verify that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA object references.

The registerDevice operation shall add the device indicated by the input registeringDevice
parameter and the device’s attributes to the domain manager, if it does not already exist.

The registerDevice operation shall register the new device indicated by the input
registeringDevice parameter, when the previously registered device has the same identifier
attribute as the new device and the reference to the registered device refers to a nonexistent
object.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered device refers to a nonexistent object.

The registerDevice operation associates the device indicated by the input registeringDevice
parameter with the device manager indicated by the input registeredDeviceMgr parameter when
the device manager is a valid registered DeviceManager in the domain manager.

The registerDevice operation shall establish any pending connections from previously registered
device managers when the registering device completes these connections.

The registerDevice operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager log upon successful device registration.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log, when the CF InvalidProfile exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the DeviceManagerNotRegistered exception is raised.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the CF InvalidObjectReference exception is raised.

void registerDevice (in Device registeringDevice, in
DeviceManager registeredDeviceMgr) raises
(InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-65

The registerDevice operation shall write a FAILURE_ALARM log record to a domain manager
log when the RegisterError exception is raised.

The registerDevice operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a device. For
this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the registered device.

3. The sourceName is the label attribute of the registered device.

4. The sourceIOR is the object reference for the registered device.

5. The sourceCategory is “DEVICE”.

The following UML sequence diagram (Figure 3-20: DomainManager Sequence Diagram for
registerDevice Operation) illustrates the domain manager's behavior for the registerDevice
operation.

Figure 3-20: DomainManager Sequence Diagram for registerDevice Operation

3.1.3.2.3.6.2.4 Returns

This operation does not return a value.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-66

3.1.3.2.3.6.2.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidProfile exception when:

1. The device's SPD file and the SPD’s referenced files do not exist, or

2. The device profile does not reference allocation properties.

The registerDevice operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and the referenced device manager is
not registered with the domain manager.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The registerDevice operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

The registerDevice operation shall raise the RegisterError exception and not register a new
device when that device, indicated by the input registeringDevice parameter, has the same
identifier attribute as a previously registered device and the reference to the registered device
refers to an existing object.

3.1.3.2.3.6.3 installApplication

3.1.3.2.3.6.3.1 Brief Rationale

The installApplication operation is used to install new application software in the domain.

3.1.3.2.3.6.3.2 Synopsis

3.1.3.2.3.6.3.3 Behavior

The input profileFileName parameter is the absolute pathname of the application SAD.

The installApplication operation shall verify the existence of the application's SAD file and all
files upon which the SAD depends, within the domain manager's file manager.

The installApplication operation shall write an ADMINISTRATIVE_EVENT log record to a
domain manager's log, upon successful application installation.

The installApplication operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a domain manager's log.

The installApplication operation shall send a DomainManagementObjectAddedEventType event
to the Outgoing Domain Management event channel, upon successful installation of an
application. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the installed application factory.

3. The sourceName is the name attribute of the installed application factory.

4. The sourceIOR is the object reference for the installed application factory.

5. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.3.4 Returns

This operation does not return a value.

void installApplication (in string profileFileName) raises
(InvalidProfile, InvalidFileName, ApplicationInstallationError,
ApplicationAlreadyInstalled);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-67

3.1.3.2.3.6.3.5 Exceptions/Errors

The installApplication operation shall raise the ApplicationInstallationError exception when the
installation of the application file(s) was not successfully completed.

The installApplication operation shall raise the CF InvalidFileName exception when the input
SAD file or any of the SAD’s referenced filenames do not exist in the file system identified by
the absolute path of the input profileFileName parameter. The installApplication operation shall
log a FAILURE_ALARM log record to a domain manager's Log with a message consisting of
"installApplication::invalid file is xxx", where "xxx" is the input or referenced filename, when
the CF InvalidFileName exception occurs.

The installApplication operation shall raise the CF InvalidProfile exception when any referenced
property definition is missing.

The installApplication operation shall write a FAILURE_ALARM log record to a domain
manager's log when the CF InvalidProfile exception is raised. The value of the logData attribute
of this record is "installApplication::invalid Profile is yyy", where "yyy" is the input or
referenced file name.

The installApplication operation shall raise the ApplicationAlreadyInstalled exception when the
softwareassembly element id attribute of the referenced application is the same as a previously
registered application.

3.1.3.2.3.6.4 createApplication

3.1.3.2.3.6.4.1 Brief Rationale

The createApplication operation shall create an application instance from the ApplicationFactory
specified by the profileName parameter using the context of the name, initConfiguration and
deviceAssignment parameters.

3.1.3.2.3.6.4.2 Synopsis

3.1.3.2.3.6.4.3 Behavior

The createApplication operation shall create an instance of the ApplicationFactory as specified
by the profileName parameter and then call the factory’s create method with the provided name,
initConfiguration and deviceAssignment parameters. Refer to the ApplicationFactory::create
section for a detailed description of the application deployment process.

Application createApplication (in string profileName, in string
name, in Properties initConfiguration, in
DeviceAssignmentSequence deviceAssignments) raises
(CF::InvalidFileName, CF::InvalidProfile,
CF::ApplicationFactory::CreateApplicationError,
CF::ApplicationFactory::CreateApplicationRequestError,
CF::ApplicationFactory::InsufficientCapacityError,
CF::ApplicationFactory::InvalidInitConfiguration,
);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-68

3.1.3.2.3.6.5 unregisterDeviceManager

3.1.3.2.3.6.5.1 Brief Rationale

The unregisterDeviceManager operation is used to unregister a DeviceManager component from
the domain manager. A device manager may be unregistered during run-time for dynamic
extraction or maintenance of the device manager.

3.1.3.2.3.6.5.2 Synopsis

3.1.3.2.3.6.5.3 Behavior

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the device manager that is being unregistered.

The unregisterDeviceManager operation shall disconnect the established connections (including
those made to the CORBA Event Service event channels) of the unregistering device manager as
well as for its registered devices and services. Connections broken as a result of the
unregisterDeviceManager operation shall be considered as “pending” for future connections
when the component to which the device manager or its registered devices and services were
connected still exists. The unregisterDeviceManager operation may destroy the CORBA Event
Service channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all device manager's file systems from
its file manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a device
manager, write an ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a device
manager, write a FAILURE_ALARM log record to a domain manager's log.

The unregisterDeviceManager operation shall send a
DomainManagementObjectRemovedEventType event to the Outgoing Domain Management
event channel, upon successful unregistration of a device manager. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device manager.

3. The sourceName is the label attribute of the unregistered device manager.

4. The sourceCategory is “DEVICE_MANAGER”.

3.1.3.2.3.6.5.4 Returns

This operation does not return a value.

3.1.3.2.3.6.5.5 Exceptions/Errors

The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input deviceMgr parameter contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an
internal error exists which causes an unsuccessful unregistration.

void unregisterDeviceManager (in DeviceManager deviceMgr) raises
(InvalidObjectReference, UnregisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-69

3.1.3.2.3.6.6 unregisterDevice

3.1.3.2.3.6.6.1 Brief Rationale

The unregisterDevice operation is used to remove a device entry from the domain manager for a
specific device manager.

3.1.3.2.3.6.6.2 Synopsis

3.1.3.2.3.6.6.3 Behavior

The unregisterDevice operation shall remove a device entry from the domain manager.

The unregisterDevice operation shall release (client-side CORBA release) the
unregisteringDevice from the domain manager.

The unregisterDevice operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering device. Connections
broken as a result of the unregisterDevice operation shall be considered as “pending” for future
connections when the component to which the device was connected still exists.

The unregisterDevice operation may destroy the CORBA Event Service event channel when no
more consumers and producers are connected to it.

The unregisterDevice operation will release all Application objects that are
currently using the unregistering device.

The unregisterDevice operation shall, upon the successful unregistration of a device, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterDevice operation shall, upon unsuccessful unregistration of a device, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterDevice operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
device. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the unregistered device.

3. The sourceName is the label attribute of the unregistered device.

4. The sourceCategory is “DEVICE”.

3.1.3.2.3.6.6.4 Returns

This operation does not return a value.

3.1.3.2.3.6.6.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

The unregisterDevice operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

void unregisterDevice (in Device unregisteringDevice) raises
(InvalidObjectReference, UnregisterError)

SCA version 2.2.2, REDHAWK 2.2 LTS

3-70

3.1.3.2.3.6.7 uninstallApplication

3.1.3.2.3.6.7.1 Brief Rationale

The uninstallApplication operation is used to uninstall an application factory from the domain.

3.1.3.2.3.6.7.2 Synopsis

3.1.3.2.3.6.7.3 Behavior

The ApplicationId parameter is the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

The uninstallApplication operation shall make the ApplicationFactory unavailable from the
domain manager (i.e., its services no longer provided for the application).

The uninstallApplication operation shall, upon successful uninstall of an application, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an application, write a
FAILURE_ALARM log record to a domain manager's log.

The uninstallApplication operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon the successful uninstallation of
an application. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the uninstalled application factory.

3. The sourceName is the name attribute of the uninstalled application factory.

4. The sourceCategory is “APPLICATION_FACTORY”.

3.1.3.2.3.6.7.4 Returns

This operation does not return a value.

3.1.3.2.3.6.7.5 Exceptions/Errors

The uninstallApplication operation shall raise the InvalidIdentifier exception when the
ApplicationId is invalid.

The uninstallApplication operation shall raise the ApplicationUninstallationError exception
when an internal error causes an unsuccessful uninstallation of the application.

3.1.3.2.3.6.8 registerService

3.1.3.2.3.6.8.1 Brief Rationale

The registerService operation is used to register a service for a specific device manager with the
domain manager.

3.1.3.2.3.6.8.2 Synopsis

void uninstallApplication (in string applicationId)raises
(InvalidIdentifier, ApplicationUninstallationError);

void registerService (in Object registeringService, in
DeviceManager registeredDeviceMgr, in string name) raises
(InvalidObjectReference, DeviceManagerNotRegistered,
RegisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-71

3.1.3.2.3.6.8.3 Behavior

The registerService operation shall verify the input registeringService and registeredDeviceMgr
are valid object references.

The registerService operation shall verify the input registeredDeviceMgr has been previously
registered with the domain manager.

The registerService operation shall add the registeringService’s object reference and the
registeringService’s name to the domain manager, if the name for the type of service being
registered does not exist within the domain manager. The registerService operation shall return
without exception and not register a new service when that service, indicated by the input
registeringService parameter, has the same name and type as a previously registered service and
the reference to the registered service refers to an existing object.

The registerService operation shall register the new service, indicated by the input
registeringService parameter, when the previously registered service has the same name and type
as the new service and the reference to the registered service refers to a nonexistent object.

The registerService operation shall write an ADMINISTRATIVE_EVENT log record when
reference to the registered service refers to a nonexistent object.

The registerService operation shall associate the input registeringService parameter with the
input registeredDeviceMgr parameter in the domain manager, when the registeredDeviceMgr
parameter indicates a device manager that is registered with the domain manager.

The registerService operation shall establish any pending connections from previously registered
device managers when the registering service completes these connections.

The registerService operation shall, upon successful service registration, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The registerService operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to a domain manager's log.

The registerService operation shall send a DomainManagementObjectAddedEventType event to
the Outgoing Domain Management event channel, upon successful registration of a service. For
this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the componentinstantiation element
associated with the registered service.

3. The sourceName is the input name parameter for the registering service.

4. The sourceIOR is the object reference for the registered service.

5. The sourceCategory is “SERVICE”.

The following UML sequence diagram (Figure 3-21: DomainManager Sequence Diagram for
registerService Operation) illustrates the domain manager's behavior for the registerService
operation.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-72

Figure 3-21: DomainManager Sequence Diagram for registerService Operation

3.1.3.2.3.6.8.4 Returns

This operation does not return a value.

3.1.3.2.3.6.8.5 Exceptions/Errors

The registerService operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and is not registered with the domain
manager.

The registerService operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.

The registerService operation shall raise the RegisterError exception when an internal error
exists which causes an unsuccessful registration.

3.1.3.2.3.6.9 unregisterService

3.1.3.2.3.6.9.1 Brief Rationale

The unregisterService operation is used to remove a service entry from the domain manager for a
specific device manager.

3.1.3.2.3.6.9.2 Synopsis

3.1.3.2.3.6.9.3 Behavior

The unregisterService operation shall disconnect the established connections (including those
made to the CORBA Event Service event channels) of the unregistering service indicated by the
input unregisteringService parameter. Connections broken as a result of the unregisterService
operation shall be considered as “pending” for future connections when the component to which
the service was connected still exists.

void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference, UnregisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-73

The unregisterService operation shall remove the unregisteringService entry specified by the
input name parameter from the domain manager.

The unregisterService operation shall release (client-side CORBA release) the
unregisteringService from the domain manager.

The unregisterService operation will release all Application objects that have
connections to the unregistering service defined in the software assembly
descriptor.

The unregisterService operation shall, upon the successful unregistration of a service, write an
ADMINISTRATIVE_EVENT log record to a domain manager's log.

The unregisterService operation shall, upon unsuccessful unregistration of a service, write a
FAILURE_ALARM log record to a domain manager's log.

The unregisterService operation shall send a DomainManagementObjectRemovedEventType
event to the Outgoing Domain Management event channel, upon successful unregistration of a
service. For this event:

1. The producerId is the identifier attribute of the domain manager.

2. The sourceId is the identifier attribute of the componentinstantiation element
associated with the unregistered service.

3. The sourceName is the input name parameter for the unregistering service.

4. The sourceCategory is “SERVICE”.

3.1.3.2.3.6.9.4 Returns

This operation does not return a value.

3.1.3.2.3.6.9.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a service interface.

The unregisterService operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.10 registerWithEventChannel

3.1.3.2.3.6.10.1 Brief Rationale

The registerWithEventChannel operation is used to connect a consumer to a domain’s event
channel.

3.1.3.2.3.6.10.2 Synopsis

3.1.3.2.3.6.10.3 Behavior

The registerWithEventChannel operation shall connect the object identified by the input
registeringObject parameter to an event channel as specified by the input eventChannelName
parameter.

void registerWithEventChannel (in Object registeringObject, in
string registeringId, in string eventChannelName) raises
(InvalidObjectReference, InvalidEventChannelName,
AlreadyConnected);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-74

3.1.3.2.3.6.10.4 Returns

This operation does not return a value.

3.1.3.2.3.6.10.5 Exceptions/Errors

The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception
when the input registeringObject parameter contains an invalid reference to a
CosEventComm::PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid event channel name.

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input
parameter contains a connection to the event channel for the input registeringId parameter.

3.1.3.2.3.6.11 unregisterFromEventChannel

3.1.3.2.3.6.11.1 Brief Rationale

The unregisterFromEventChannel operation is used to disconnect a consumer from a domain’s
event channel.

3.1.3.2.3.6.11.2 Synopsis

3.1.3.2.3.6.11.3 Behavior

The unregisterFromEventChannel operation shall disconnect a registered component from the
event channel as identified by the input parameters.

3.1.3.2.3.6.11.4 Returns

This operation does not return a value.

3.1.3.2.3.6.11.5 Exceptions/Errors

The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid reference to an event channel.

The unregisterFromEventChannel operation shall raise the NotConnected exception when the
input parameter unregisteringId parameter is not connected to specified input event channel.

3.1.3.2.3.6.12 registerRemoteDomainManager

3.1.3.2.3.6.12.1 Brief Rationale

The registerRemoteDomainManager operation is used to register a remote Domain Manager.

3.1.3.2.3.6.12.2 Synopsis

3.1.3.2.3.6.12.3 Behavior

The registerRemoteDomainManager operation shall add the remote Domain Manager to the
registered Domain Manager sequence.

void unregisterFromEventChannel (in string unregisteringId, in
string eventChannelName) raises (InvalidEventChannelName,
NotConnected);

void registerRemoteDomainManager (in DomainManager
registeringDomainManager) raises (InvalidObjectReference,
RegisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-75

3.1.3.2.3.6.12.4 Returns

This operation does not return a value.

3.1.3.2.3.6.12.5 Exceptions/Errors

The registerRemoteDomainManager operation shall raise the CF InvalidObjectReference
exception when the input registeringDomainManager parameter contains an invalid reference to
a CF::DomainManager interface.

The registerRemoteDomainManager operation shall raise the RegisterError exception when the
input remote Domain Manager contains an invalid Domain Manager name.

3.1.3.2.3.6.13 unregisterRemoteDomainManager

3.1.3.2.3.6.13.1 Brief Rationale

The unregisterRemoteDomainManager operation is used to unregister a remote Domain
Manager.

3.1.3.2.3.6.13.2 Synopsis

3.1.3.2.3.6.13.3 Behavior

The unregisterRemoteDomainManager operation shall remove the remote Domain Manager
from the registered Domain Manager sequence.

3.1.3.2.3.6.13.4 Returns

This operation does not return a value.

3.1.3.2.3.6.13.5 Exceptions/Errors

The unregisterRemoteDomainManager operation shall raise the CF InvalidObjectReference
exception when the input unregisteringDomainManager parameter contains an invalid reference
to a CF::DomainManager interface.

The unregisterRemoteDomainManager operation shall raise the UnregisterError exception when
the unregistration process fails.

3.1.3.2.4 DeviceManager

3.1.3.2.4.1 Description

The DeviceManager interface is used to manage a set of logical devices and services. The
DeviceManager interface UML is depicted in Figure 3-22: DeviceManager UML. The interface
for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to
meaningful labels (e.g., audio1, serial1, etc.), along with the devices and services
to be deployed.

2. File System - the file system associated with this device manager.

3. Device Manager Identifier - the instance-unique identifier for this device
manager.

4. Device Manager Label - the meaningful name given to this device manager.

void unregisterRemoteDomainManager (in DomainManager
unregisteringDomainManager) raises (InvalidObjectReference,
UnregisterError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-76

5. Registered Devices - a list of devices that have registered with this device
manager.

6. Registered Services - a list of services that have registered with this device
manager.

3.1.3.2.4.2 UML

Figure 3-22: DeviceManager UML

3.1.3.2.4.3 Types

This section describes the types defined in the interface DeviceManager.

3.1.3.2.4.3.1 ServiceType

This structure provides the object reference and name of a service that has registered with the
device manager.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-77

3.1.3.2.4.3.2 ServiceSequenceType

This type provides an unbounded sequence of ServiceType structures for services that have
registered with the device manager.

3.1.3.2.4.4 Attributes

3.1.3.2.4.4.1 identifier

The readonly identifier attribute shall contain the instance-unique identifier for a device
manager. The identifier shall be identical to the deviceconfiguration element id attribute of the
device manager's Device Configuration Descriptor (DCD) file.

3.1.3.2.4.4.2 label

The readonly label attribute shall contain the device manager's label. The label is the meaningful
name given to a device manager.

3.1.3.2.4.4.3 fileSys

The readonly fileSys attribute shall contain the FileSystem associated with this device manager.

3.1.3.2.4.4.4 deviceConfigurationProfile

The readonly deviceConfigurationProfile attribute contains the device manager’s profile
descriptor.

The readonly deviceConfigurationProfile attribute shall contain a profile element (Profile
Descriptor) with a file reference to the device manager’s Device Configuration Descriptor
(DCD) file. Files referenced within the profile are obtained via the FileSystem.

REDHAWK does not return a profile element. It returns an absolute filename.

3.1.3.2.4.4.5 registeredDevices

The readonly registeredDevices attribute shall contain a list of devices that have registered with
this device manager or a sequence length of zero if no devices have registered with the device
manager.

struct ServiceType
{
 Object serviceObject;
 string serviceName;
};

typedef sequence <ServiceType> ServiceSequence;

readonly attribute string identifier;

readonly attribute string label;

readonly attribute FileSystem fileSys;

readonly attribute string deviceConfigurationProfile;

readonly attribute DeviceSequence registeredDevices;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-78

3.1.3.2.4.4.6 registeredServices

The readonly registeredServices attribute shall contain a list of services that have registered with
this device manager or a sequence length of zero if no services have registered with the device
manager.

3.1.3.2.4.4.7 domMgr

The readonly domMgr attribute contains the DeviceManager's Domain Manager or a nil CORBA
reference if the association with the Domain Manager has not happened yet.

3.1.3.2.4.5 General Behavior

The device manager upon start up shall register itself with a domain manager. This requirement
allows the system to be developed where at a minimum only the DomainManager’s object
reference needs to be known. A device manager shall use the information in the device
manager’s DCD for determining:

1. Services to be deployed for this device manager (for example, log(s)),

2. Devices to be created for this device manager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is
deployed on the same hardware device as the device manager),

3. Devices to be deployed on (executing on) another device,

4. Devices to be aggregated to another device,

5. Mount point names for file systems,

6. The DeviceManager’s identifier attribute value which is the DCD’s id attribute
value, and

7. The DeviceManager’s label attribute value which is the DCD’s name attribute
value.

The device manager shall create FileSystem components implementing the FileSystem interface
for each OS file system. If multiple file systems are to be created, the device manager shall
mount created file systems to a FileManager component (widened to a FileSystem through the
FileSys attribute). The mount points used for the created file systems are identical to the values
identified in the filesystemnames element of the device manager’s Device Configuration
Descriptor. Each mounted file system name shall be unique within the device manager.

The Device Manager’s File System “/” is set to the local host’s
$SDRROOT/dev.

The device manager shall supply execute operation parameters for a device consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string
that is the full mounted file system file path name.

readonly attribute ServiceSequence registeredServices;

readonly attribute DomainManager domMgr;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-79

3. Device Identifier – The ID is “DEVICE_ID” and the value is a string that
corresponds to the DCD componentinstantiation id attribute.

4. Device Label – The ID is “DEVICE_LABEL” and the value is a string that
corresponds to the DCD componentinstantiation usage element. This parameter
is only used when the DCD componentinstantiation usage element is specified.

5. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is
a string that is an AggregateDevice stringified IOR. This parameter is only used
when the DCD componentinstantiation element represents the child device of
another componentinstantiation element.

6. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

REDHAWK includes the additional execute parameters
LOGGING_CONFIG_URI.

The device manager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute operation options parameters.

The device manager shall initialize and then configure logical devices that are started by the
device manager, after they have successfully registered with the device manager. The device
manager shall configure a DCD’s componentinstantiation element provided the
componentinstantiation element has “configure” readwrite or writeonly properties with values.
Figure 3-23: DeviceManager Startup Scenario depicts a device manager startup scenario.

If a service is deployed by the device manager, the device manager shall supply execute
operation parameters consisting of:

1. Device manager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string
that is the DeviceManager stringified IOR.

2. Service Name – The ID is “SERVICE_NAME” and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

3. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The device manager shall pass the
componentinstantiation element “execparam” properties that have values as
parameters. The device manager shall pass “execparam” parameters’ IDs and
values as string values.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-80

Figure 3-23: DeviceManager Startup Scenario

3.1.3.2.4.6 Operations

3.1.3.2.4.6.1 registerDevice

3.1.3.2.4.6.1.1 Brief Rationale

The registerDevice operation provides the mechanism to register a device with a device
manager.

3.1.3.2.4.6.1.2 Synopsis

3.1.3.2.4.6.1.3 Behavior

The registerDevice operation shall add the input registeringDevice to the DeviceManager
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice is ignored when duplicated.

void registerDevice (in Device registeringDevice) raises
(InvalidObjectReference);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-81

REDHAWK considers a Device registration to be a duplicate if the name of
the registering device is already registered in the naming service or if the
object has already registered.

The registerDevice operation shall register the registeringDevice with the domain manager when
the device manager has already registered to the domain manager and the registeringDevice has
been successfully added to the DeviceManager registeredDevices attribute.

The registerDevice operation shall write a FAILURE_ALARM log record to a domain
manager's log upon unsuccessful registration of a device to the DeviceManager
registeredDevices attribute.

3.1.3.2.4.6.1.4 Returns

This operation does not return any value.

3.1.3.2.4.6.1.5 Exceptions/Errors

The registerDevice operation shall raise the CF InvalidObjectReference when the input
registeringDevice is a nil CORBA object reference.

3.1.3.2.4.6.2 unregisterDevice

3.1.3.2.4.6.2.1 Brief Rationale

The unregisterDevice operation unregisters a device from a device manager.

3.1.3.2.4.6.2.2 Synopsis

3.1.3.2.4.6.2.3 Behavior

The unregisterDevice operation shall remove the input registeredDevice from the
DeviceManager registeredDevices attribute. The unregisterDevice operation shall unregister the
input registeredDevice from the domain manager when the input registeredDevice is registered
with the device manager and the device manager is not shutting down.

The unregisterDevice operation shall write a FAILURE_ALARM log record when it cannot
successfully remove a registeredDevice from the DeviceManager registeredDevices attribute.

3.1.3.2.4.6.2.4 Returns

This operation does not return any value.

3.1.3.2.4.6.2.5 Exceptions/Errors

The unregisterDevice operation shall raise the CF InvalidObjectReference when the input
registeredDevice is a nil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.4.6.3 registerService

3.1.3.2.4.6.3.1 Brief Rationale

The registerService operation provides the mechanism to register a service with a device
manager.

void unregisterDevice (in Device registeredDevice) raises
(InvalidObjectReference);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-82

3.1.3.2.4.6.3.2 Synopsis

3.1.3.2.4.6.3.3 Behavior

The registerService operation shall add the input registeringService to the DeviceManager
registeredServices attribute when the input registeringService does not already exist in the
registeredServices attribute. The registeringService is ignored when duplicated.

The registerService operation shall register the registeringService with the domain manager
when the device manager has already registered to the domain manager and the
registeringService has been successfully added to the DeviceManager’s registeredServices
attribute.

The registerService operation shall write a FAILURE_ALARM log record upon unsuccessful
registration of a service to the DeviceManager registeredServices attribute.

3.1.3.2.4.6.3.4 Returns

This operation does not return any value.

3.1.3.2.4.6.3.5 Exceptions/Errors

The registerService operation shall raise the CF InvalidObjectReference exception when the
input registeringService is a nil CORBA object reference.

3.1.3.2.4.6.4 unregisterService

3.1.3.2.4.6.4.1 Brief Rationale.

The unregisterService operation unregisters a service from a device manager.

3.1.3.2.4.6.4.2 Synopsis

3.1.3.2.4.6.4.3 Behavior

The unregisterService operation shall remove the input registered service specified by the input
name parameter from the DeviceManager::registeredServices attribute. The unregisterService
operation shall unregister the input unregistering service from the domain manager when the
device manager is not in the SHUTTING_DOWN state.

The unregisterService operation shall write a FAILURE_ALARM log record when it cannot
successfully remove a registeredService from the DeviceManager registeredServices attribute.

3.1.3.2.4.6.4.4 Returns

This operation does not return any value.

3.1.3.2.4.6.4.5 Exceptions/Errors

The unregisterService operation shall raise the CF InvalidObjectReference when the input
unregistering service is a nil CORBA object reference or does not exist in the DeviceManager
registeredServices attribute.

3.1.3.2.4.6.5 shutdown

3.1.3.2.4.6.5.1 Brief Rationale

The shutdown operation provides the mechanism to terminate a device manager.

void registerService (in Object registeringService, in string
name) raises (InvalidObjectReference);

void unregisterService (in Object unregisteringService, in
string name) raises (InvalidObjectReference);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-83

3.1.3.2.4.6.5.2 Synopsis

3.1.3.2.4.6.5.3 Behavior

The shutdown operation shall unregister the device manager from the domain manager.

The shutdown operation shall perform releaseObject on all of the device manager's registered
devices (DeviceManager registeredDevices attribute).

The shutdown operation shall cause the device manager to be unavailable (i.e., released from the
CORBA environment and its process terminated on the OS) when all of the device manager's
registered devices are unregistered from the device manager.

3.1.3.2.4.6.5.4 Returns

This operation does not return any value.

3.1.3.2.4.6.5.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.2.4.6.6 getComponentImplementationId

3.1.3.2.4.6.6.1 Brief Rational

The getComponentImplementationId operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.4.6.6.2 Synopsis

3.1.3.2.4.6.6.3 Behavior

The getComponentImplementationId operation returns the SPD implementation element’s id
attribute that matches the id attribute of the SPD implementation element used to create the
component specified by the input componentInstantiationId parameter.

3.1.3.2.4.6.6.4 Returns

The getComponentImplementationId operation shall return the SPD implementation element’s id
attribute that matches the SPD implementation element used to create the component identified
by the input componentInstantiationId parameter. The getComponentImplementationId
operation shall return an empty string when the input componentInstantiationId parameter does
not match the id attribute of any SPD implementation element used to create the component.

3.1.3.2.4.6.6.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.2.5 AllocationManager

3.1.3.2.5.1 Description

The AllocationManager interface is to consolidate allocations and, when appropriate, delegate
unfulfilled allocations to other Domain Managers. The AllocationManager is used internally by
the ApplicationFactory at deployment time and does not affect the Application deployment

void shutdown();

string getComponentImplementationId (in string
componentInstantiationId);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-84

sequence. The AllocationManager interface UML is depicted in Figure 3-24:
AllocationManager UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-85

3.1.3.2.5.2 UML

Figure 3-24: AllocationManager UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-86

3.1.3.2.5.3 Types

This section describes the types defined in the interface AllocationManager.

3.1.3.2.5.3.1 AllocationRequestType

This structure defines a type for describing an allocation. The allocation request is composed of a
request ID, the properties that need to be allocated, the device pools that the allocations need to
be limited to, and the list of devices that need to satisfy this request.

3.1.3.2.5.3.2 AllocationResponseType

This structure defines a type for associating an allocation ID with its request ID. The response
also contains the list of allocation responses from the device allocations as well as the devices
that satisfied the request.

3.1.3.2.5.3.3 AllocationStatusType

This structure defines a type for describing a successful allocation that has not been deallocated.

struct AllocationRequestType
{
 string requestID;
 Properties allocationProperties;
 DevicePoolNames devicePools;
 DeviceSequence requestedDevices;
 string sourceID
};

struct AllocationResponseType
{
 string requestID;
 string allocationID;
 Properties allocationProperties;
 Device allocatedDevice;
 DeviceManager allocationDeviceManager;
};

struct AllocationStatusType
{
 string allocationID;
 string requestingDomain;
 Properties allocationProperties;
 Device allocatedDevice;
 DeviceManager allocationDeviceManager;
 string sourceID;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-87

3.1.3.2.5.3.4 DeviceLocationType

This structure defines a type for locating a particular Device in a Domain/Device
Manager/Device Pool.

3.1.3.2.5.3.5 DeviceScopeType

This structure defines an enumerated type for the possible scopes for which to list devices: local
Domain, all Domains, or only authorized devices.

3.1.3.2.5.3.6 DevicePoolNames

This type provides an unbounded sequence of Device Pool names.

3.1.3.2.5.3.7 AllocationRequestSequence

This type provides an unbounded sequence of AllocationRequestType.

3.1.3.2.5.3.8 AllocationResponseSequence

This type provides an unbounded sequence of AllocationResponseType.

3.1.3.2.5.3.9 AllocationStatusSequence

This type provides an unbounded sequence of AllocationStatusType.

3.1.3.2.5.3.10 DeviceLocationSequence

This type provides an unbounded sequence of DeviceLocationType.

struct DeviceLocationType
{
 string domainName;
 DevicePoolNames pools;
 DeviceManager devMgr;
 Device dev;
};

enum DeviceScopeType
{
 LOCAL_DEVICES,
 ALL_DEVICES,
 AUTHORIZED_DEVICES
};

typedef sequence <string> DevicePoolNames;

typedef sequence <AllocationRequestType>
AllocationRequestSequence;

typedef sequence <AllocationResponseType>
AllocationResponseSequence;

typedef sequence <AllocationStatusType>
AllocationStatusSequence;

typedef sequence <DeviceLocationType> DeviceLocationSequence;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-88

3.1.3.2.5.3.11 AllocationIDSequence

This type provides an unbounded sequence of allocation IDs.

3.1.3.2.5.3.12 AllocationError

The AllocationError exception indicates that an error occurred during an attempt to allocate a set
of requests.

3.1.3.2.5.3.13 InvalidAllocationId

The InvalidAllocationId exception indicates that an invalid allocation ID was used.

3.1.3.2.5.4 Attributes

3.1.3.2.5.4.1 allDevices

The readonly allDevices attribute shall contain a sequence of all Devices in all Domains that can
be seen by any Allocation Manager visible to the local Allocation Manager.

3.1.3.2.5.4.2 authorizedDevices

The readonly authorizedDevices attribute shall contain a sequence of all Devices after an
arbitrary policy is applied by any Allocation Manager visible by the local Allocation Manager.

3.1.3.2.5.4.3 localDevices

The readonly localDevices attribute contains a sequence of all Devices that are located within the
local Domain.

3.1.3.2.5.4.4 domainMgr

The readonly domainMgr attribute contains a reference to the local Domain Manager.

3.1.3.2.5.5 General Behavior

The Allocation Manager consolidates allocations and, when appropriate, delegates unfulfilled
allocations to other Domain Managers. Delegations occur to other Domains that are registered
with the local Domain through the Domain Manager’s registerRemoteDomainManager operation
and when the allocation corresponds only to a usesdevice relationship.

typedef sequence <string> allocationIDSequence;

Exception AllocationError {
 short errorCode;
 string message;
};

Exception InvalidAllocationId {
 allocationIDSequence invalidAllocationIds;
};

readonly attribute DeviceLocationSequence allDevices;

readonly attribute DeviceLocationSequence authorizedDevices;

readonly attribute DeviceLocationSequence localDevices;

readonly attribute DomainManager domainMgr;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-89

3.1.3.2.5.6 Operations

3.1.3.2.5.6.1 allocate

3.1.3.2.5.6.1.1 Brief Rationale

The allocate operation provides the mechanism to allocate a set of dependencies.

3.1.3.2.5.6.1.2 Synopsis

3.1.3.2.5.6.1.3 Behavior

The allocate operation shall cycle through all Devices visible to the Allocation Manager, and
attempt to satisfy the requests. Each request must be satisfied by a single Device, or not satisfied
at all.

3.1.3.2.5.6.1.4 Returns

This operation returns a sequence of responses, each containing a response to a fulfilled request.

3.1.3.2.5.6.1.5 Exceptions/Errors

The allocate operation shall raise the AllocationError when no request is satisfied.

3.1.3.2.5.6.2 allocateLocal

3.1.3.2.5.6.2.1 Brief Rationale

The allocateLocal operation provides the mechanism to allocate a set of dependencies on
Devices in the local Domain.

3.1.3.2.5.6.2.2 Synopsis

3.1.3.2.5.6.2.3 Behavior

The allocateLocal operation shall cycle through all Devices visible to the Allocation Manager
available in the local Domain only. Each request must be satisfied by a single Device, or not
satisfied at all.

3.1.3.2.5.6.2.4 Returns

This operation returns a sequence of responses, each containing a response to a fulfilled request.

3.1.3.2.5.6.2.5 Exceptions/Errors

The allocateLocal operation shall raise the AllocationError when no request is satisfied.

3.1.3.2.5.6.3 deallocate

3.1.3.2.5.6.3.1 Brief Rationale

The deallocate operation provides the mechanism to deallocate a set of allocations.

3.1.3.2.5.6.3.2 Synopsis

AllocationResponseSequence allocate (in
AllocationRequestSequence requests) raises (AllocationError);

AllocationResponseSequence allocateLocal (in
AllocationRequestSequence requests, in string domainName) raises
(AllocationError);

void deallocate (in allocationIDSequence allocationIDs) raises
(InvalidAllocationId);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-90

3.1.3.2.5.6.3.3 Behavior

The deallocate operation shall perform all deallocations for the allocations whose id is included
in the allocationIDs argument.

3.1.3.2.5.6.3.4 Returns

This operation does not return any value.

3.1.3.2.5.6.3.5 Exceptions/Errors

The deallocate operation shall raise the InvalidAllocationId when any of the allocation ids
specified is invalid.

3.1.3.2.5.6.4 allocations

3.1.3.2.5.6.4.1 Brief Rationale

The allocations operation provides the mechanism to retrieve all allocations that have been
processed through this Allocation Manager.

3.1.3.2.5.6.4.2 Synopsis

3.1.3.2.5.6.4.3 Behavior

The allocations operation shall return all current allocations that are specified in allocationIDs. If
allocationIDs is a zero-length sequence, then all allocations processed through this Allocation
Manager are returned.

3.1.3.2.5.6.4.4 Returns

This operation returns a sequence of allocation status structures, each containing the status of an
allocation specified in allocationIDs. If allocationIDs is a zero-length sequence, then the return
value is the status of all allocations processed through this Allocation Manager.

3.1.3.2.5.6.4.5 Exceptions/Errors

The allocations operation shall raise the InvalidAllocationId when any of the allocation ids
specified is invalid.

3.1.3.2.5.6.5 localAllocations

3.1.3.2.5.6.5.1 Brief Rationale

The localAllocations operation provides the mechanism to retrieve all allocations that have been
processed through this Allocation Manager and that satisfied by a Device on its local Domain.

3.1.3.2.5.6.5.2 Synopsis

AllocationStatusSequence allocations (in allocationIDSequence
allocationIDs) raises (InvalidAllocationId);

AllocationStatusSequence localAllocations (in
allocationIDSequence allocationIDs) raises
(InvalidAllocationId);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-91

3.1.3.2.5.6.5.3 Behavior

The localAllocations operation shall return all current allocations that are specified in
allocationIDs. If allocationIDs is a zero-length sequence, then all allocations processed through
this Allocation Manager are returned. The allocation status response is limited to allocations
satisfied by Devices on the local Domain.

3.1.3.2.5.6.5.4 Returns

This operation returns a sequence of allocation status structures, each containing the status of an
allocation specified in allocationIDs. If allocationIDs is a zero-length sequence, then the return
value is the status of all allocations processed through this Allocation Manager. The allocation
status response is limited to allocations satisfied by Devices on the local Domain.

3.1.3.2.5.6.5.5 Exceptions/Errors

The localAllocations operation shall raise the InvalidAllocationId when any of the allocation ids
specified is invalid.

3.1.3.2.5.6.6 listAllocations

3.1.3.2.5.6.6.1 Brief Rationale

The listAllocations operation provides the mechanism to retrieve all allocations that have been
processed through this Allocation Manager and that have been satisfied by a Device on its local
Domain. This function relies on iterators.

3.1.3.2.5.6.6.2 Synopsis

3.1.3.2.5.6.6.3 Behavior

The listAllocations operation shall return an iterator for all the current allocations that the
AllocationManager has performed.

3.1.3.2.5.6.6.4 Returns

N/A

3.1.3.2.5.6.6.5 Exceptions/Errors

N/A

3.1.3.2.5.6.7 listDevices

3.1.3.2.5.6.7.1 Brief Rationale

The listDevices operation Lists up to 'count' devices within the given scope (local or all
Domains). If there are more remaining, the out iterator can be used to fetch additional
allocations.

3.1.3.2.5.6.7.2 Synopsis

void listAllocations (in AllocationScopeType allocScope, in
unsigned long how_many, out AllocationStatusSequence allocs, out
AllocationStatusIterator ai);

void listDevices (in DeviceScopeType deviceScope, in unsigned
long count, out DeviceLocationSequence devices, out
DeviceLocationIterator dl);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-92

3.1.3.2.5.6.7.3 Behavior

The listDevices operation shall return an iterator for all the current devices onto which the
AllocationManager has performed an allocation.

3.1.3.2.5.6.7.4 Returns

N/A

3.1.3.2.5.6.7.5 Exceptions/Errors

N/A

3.1.3.2.6 AllocationStatusIterator

3.1.3.2.6.1 Description

The AllocationStatusIterator interface provides the ability to iterate over multiple allocations.
The AllocationStatusIterator interface UML is depicted in Figure 3-25: AllocationStatusIterator
Interface UML.

3.1.3.2.6.2 UML

Figure 3-25: AllocationStatusIterator Interface UML

3.1.3.2.6.3 Types

N/A

3.1.3.2.6.4 Attributes

N/A

3.1.3.2.6.5 Operations

3.1.3.2.6.5.1 next_one

3.1.3.2.6.5.1.1 Brief Rationale

The next_one operation provides the mechanism to retrieve the next allocation.

3.1.3.2.6.5.1.2 Synopsis

3.1.3.2.6.5.1.3 Behavior

The next_one operation shall return the next allocation in the sequence.

Boolean next_one (out AllocationManager::AllocationStatusType
allocation);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-93

3.1.3.2.6.5.1.4 Returns

This operation returns a boolean that signifies whether or not there is a next element in the
sequence.

3.1.3.2.6.5.1.5 Exceptions/Errors

N/A

3.1.3.2.6.5.2 next_n

3.1.3.2.6.5.2.1 Brief Rationale

The next_n operation provides the mechanism to retrieve the next n allocations.

3.1.3.2.6.5.2.2 Synopsis

3.1.3.2.6.5.2.3 Behavior

The next_n operation shall return the next count allocations in the sequence.

3.1.3.2.6.5.2.4 Returns

This operation returns a boolean that signifies whether or not there are elements in the sequence.

3.1.3.2.6.5.2.5 Exceptions/Errors

N/A

3.1.3.2.6.5.3 destroy

3.1.3.2.6.5.3.1 Brief Rationale

The destroy operation destroys the iterator.

3.1.3.2.6.5.3.2 Synopsis

3.1.3.2.6.5.3.3 Behavior

The destroy operation shall destroy the iterator.

3.1.3.2.6.5.3.4 Returns

N/A

3.1.3.2.6.5.3.5 Exceptions/Errors

N/A

3.1.3.2.7 DeviceLocationIterator

3.1.3.2.7.1 Description

The DeviceLocationIterator interface provides the ability to iterate over multiple device
locations. The DeviceLocationIterator interface UML is depicted in Figure 3-26:
DeviceLocationIterator Interface UML.

Boolean next_n (in unsigned long count, out AllocationManager::
AllocationStatusSequence allocations);

void destroy();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-94

3.1.3.2.7.2 UML

Figure 3-26: DeviceLocationIterator Interface UML

3.1.3.2.7.3 Types

N/A

3.1.3.2.7.4 Attributes

N/A

3.1.3.2.7.5 Operations

3.1.3.2.7.5.1 next_one

3.1.3.2.7.5.1.1 Brief Rationale

The next_one operation provides the mechanism to retrieve the next device location.

3.1.3.2.7.5.1.2 Synopsis

3.1.3.2.7.5.1.3 Behavior

The next_one operation shall return the next location in the sequence.

3.1.3.2.7.5.1.4 Returns

This operation returns a boolean that signifies whether or not there is a next element in the
sequence.

3.1.3.2.7.5.1.5 Exceptions/Errors

N/A

3.1.3.2.7.5.2 next_n

3.1.3.2.7.5.2.1 Brief Rationale

The next_n operation provides the mechanism to retrieve the next n device locations.

3.1.3.2.7.5.2.2 Synopsis

3.1.3.2.7.5.2.3 Behavior

The next_n operation shall return the next count device locations in the sequence.

Boolean next_one (out AllocationManager:: DeviceLocationType
deviceLocation);

Boolean next_n (in unsigned long count, out AllocationManager::
DeviceLocationSequence deviceLocations);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-95

3.1.3.2.7.5.2.4 Returns

This operation returns a boolean that signifies whether or not there are elements in the sequence.

3.1.3.2.7.5.2.5 Exceptions/Errors

N/A

3.1.3.2.7.5.3 destroy

3.1.3.2.7.5.3.1 Brief Rationale

The destroy operation destroys the iterator.

3.1.3.2.7.5.3.2 Synopsis

3.1.3.2.7.5.3.3 Behavior

The destroy operation shall destroy the iterator.

3.1.3.2.7.5.3.4 Returns

N/A

3.1.3.2.7.5.3.5 Exceptions/Errors

N/A

3.1.3.2.8 ConnectionStatusIterator

3.1.3.2.8.1 Description

The ConnectionStatusIterator interface provides the ability to iterate over multiple connections.
The ConnectionStatusIterator interface UML is depicted in Figure 3-27:
ConnectionStatusIterator Interface UML.

3.1.3.2.8.2 UML

Figure 3-27: ConnectionStatusIterator Interface UML

3.1.3.2.8.3 Types

N/A

3.1.3.2.8.4 Attributes

N/A

void destroy();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-96

3.1.3.2.8.5 Operations

3.1.3.2.8.5.1 next_one

3.1.3.2.8.5.1.1 Brief Rationale

The next_one operation provides the mechanism to retrieve the next status.

3.1.3.2.8.5.1.2 Synopsis

3.1.3.2.8.5.1.3 Behavior

The next_one operation shall return the next connection in the sequence.

3.1.3.2.8.5.1.4 Returns

This operation returns a boolean that signifies whether or not there is a next element in the
sequence.

3.1.3.2.8.5.1.5 Exceptions/Errors

N/A

3.1.3.2.8.5.2 next_n

3.1.3.2.8.5.2.1 Brief Rationale

The next_n operation provides the mechanism to retrieve the next n statuses.

3.1.3.2.8.5.2.2 Synopsis

3.1.3.2.8.5.2.3 Behavior

The next_n operation shall return the next count connections statuses in the sequence.

3.1.3.2.8.5.2.4 Returns

This operation returns a boolean that signifies whether or not there are elements in the sequence.

3.1.3.2.8.5.2.5 Exceptions/Errors

N/A

3.1.3.2.8.5.3 destroy

3.1.3.2.8.5.3.1 Brief Rationale

The destroy operation destroys the iterator.

3.1.3.2.8.5.3.2 Synopsis

3.1.3.2.8.5.3.3 Behavior

The destroy operation shall destroy the iterator.

3.1.3.2.8.5.3.4 Returns

N/A

Boolean next_one (out ConnectionManager::ConnectionStatusType
connection);

boolean next_n (in unsigned long count, out
ConnectionManager::ConnectionStatusSequence connections);

void destroy();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-97

3.1.3.2.8.5.3.5 Exceptions/Errors

N/A

3.1.3.2.9 ConnectionManager

3.1.3.2.9.1 Description

The ConnectionManager interface provides the ability to manage connections between devices,
services, and applications. The ConnectionManager interface UML is depicted in Figure 3-28:
ConnectionManager Interface UML.

3.1.3.2.9.2 UML

Figure 3-28: ConnectionManager Interface UML

3.1.3.2.9.3 Types

This section describes the types defined in the interface ConnectionManager.

3.1.3.2.9.3.1 EndpointKind

This enumerated type describes the kind of endpoint that is defined.

3.1.3.2.9.3.2 EndpointResolutionType

This union describes how each kind of endpoint is resolved.

enum EndpointKind
{
 ENDPOINT_APPLICATION,
 ENDPOINT_DEVICE,
 ENDPOINT_SERVICE,
 ENDPOINT_EVENTCHANNEL,
 ENDPOINT_OBJECTREF
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-98

3.1.3.2.9.3.3 EndpointRequest

This type is used to make an endpoint request.

3.1.3.2.9.3.4 EndpointStatusType

This type is used to describe an existing endpoint.

3.1.3.2.9.3.5 ConnectionStatusType

This type is used to describe a connection.
struct ConnectionStatusType
{
 EndpointStatusType providesEndpoint;
 EndpointStatusType usesEndpoint;
 string connectionId;
 boolean connected;
};

3.1.3.2.9.3.6 ConnectionStatusSequence

This type is used to describe a sequence of connections.

union EndpointResolutionType switch(EndpointKind)
{
 case ENDPOINT_APPLICATION:
 string waveformId;
 case ENDPOINT_DEVICE:
 string deviceId;
 case ENDPOINT_SERVICE:
 string serviceName;
 case ENDPOINT_EVENTCHANNEL:
 string channelName;
 case ENDPOINT_OBJECTREF:
 string objectRef;
};

struct EndpointRequest
{
 EndpointResolutionType endpoint;
 string portName;
};

struct EndpointStatusType
{
 Object endpointObject;
 string portName;
 string repositoryId;
};

typedef sequence< ConnectionStatusType >
ConnectionStatusSequence;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-99

3.1.3.2.9.4 Attributes

3.1.3.2.9.4.1 connections

The readonly connections attribute shall contain a sequence of all connections maintained by the
Connection Manager.

3.1.3.2.9.5 Operations

3.1.3.2.9.5.1 connect

3.1.3.2.9.5.1.1 Brief Rationale

The connect operation provides the mechanism to create a logical connection.

3.1.3.2.9.5.1.2 Synopsis

3.1.3.2.9.5.1.3 Behavior

The connect operation creates a connection between two endpoints and returns the connection id.

3.1.3.2.9.5.1.4 Returns

N/A

3.1.3.2.9.5.1.5 Exceptions/Errors

N/A

3.1.3.2.9.5.2 disconnect

3.1.3.2.9.5.2.1 Brief Rationale

The disconnect operation provides the mechanism to remove a logical connection.

3.1.3.2.9.5.2.2 Synopsis

3.1.3.2.9.5.2.3 Behavior

The disconnect operation shall remove the logical connection id of connectionId.

3.1.3.2.9.5.2.4 Returns

N/A

3.1.3.2.9.5.2.5 Exceptions/Errors

N/A

3.1.3.2.9.5.3 listConnections

3.1.3.2.9.5.3.1 Brief Rationale

The listConnections operation provides the mechanism to retrieve the next set of connections.

readonly attribute ConnectionStatusSequence connections;

void connect (in EndpointRequest usesEndpoint, in
EndpointRequest providesEndpoint, inout string connectionId);

void disconnect (in string connectionId);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-100

3.1.3.2.9.5.3.2 Synopsis

3.1.3.2.9.5.3.3 Behavior

The listConnections operation shall return the next how_many connections in the sequence.

3.1.3.2.9.5.3.4 Returns

This operation does not return anything.

3.1.3.2.9.5.3.5 Exceptions/Errors

N/A

3.1.3.2.10 EventChannelInfoIterator

3.1.3.2.10.1 Description

The EventChannelInfoIterator interface provides the ability to iterate over multiple connections.
The EventChannelInfoIterator interface UML is depicted in Figure 3-29:
EventChannelInfoIterator Interface UML.

3.1.3.2.10.2 UML

Figure 3-29: EventChannelInfoIterator Interface UML

3.1.3.2.10.3 Types

N/A

3.1.3.2.10.4 Attributes

N/A

3.1.3.2.10.5 Operations

3.1.3.2.10.5.1 next_one

3.1.3.2.10.5.1.1 Brief Rationale

The next_one operation provides the mechanism to retrieve the next EventChannelInfo.

3.1.3.2.10.5.1.2 Synopsis

void listConnections (in unsigned long how_many, out
ConnectionStatusSequence connections, out
ConnectionStatusIterator iter);

boolean next_one (out EventChannelManager::EventChannelInfo
eci);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-101

3.1.3.2.10.5.1.3 Behavior

The next_one operation shall return the next EventChannelInfo in the sequence.

3.1.3.2.10.5.1.4 Returns

This operation returns a boolean that signifies whether or not there is a next element in the
sequence.

3.1.3.2.10.5.1.5 Exceptions/Errors

N/A

3.1.3.2.10.5.2 next_n

3.1.3.2.10.5.2.1 Brief Rationale

The next_n operation provides the mechanism to retrieve the next n EventChannelInfo.

3.1.3.2.10.5.2.2 Synopsis

3.1.3.2.10.5.2.3 Behavior

The next_n operation shall return the next how_many EventChannelInfo in the sequence.

3.1.3.2.10.5.2.4 Returns

This operation returns a boolean that signifies whether or not there are elements in the sequence.

3.1.3.2.10.5.2.5 Exceptions/Errors

N/A

3.1.3.2.10.5.3 destroy

3.1.3.2.10.5.3.1 Brief Rationale

The destroy operation destroys the iterator.

3.1.3.2.10.5.3.2 Synopsis

3.1.3.2.10.5.3.3 Behavior

The destroy operation shall destroy the iterator.

3.1.3.2.10.5.3.4 Returns

N/A

3.1.3.2.10.5.3.5 Exceptions/Errors

N/A

3.1.3.2.11 EventRegistrantIterator

3.1.3.2.11.1 Description

The EventRegistrantIterator interface provides the ability to iterate over multiple connections.
The EventRegistrantIterator interface UML is depicted in Figure 3-30: EventRegistrantIterator
Interface UML.

boolean next_n (in unsigned long how_many, out
EventChannelManager::EventChannelInfoList ecil);

void destroy ();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-102

3.1.3.2.11.2 UML

Figure 3-30: EventRegistrantIterator Interface UML

3.1.3.2.11.3 Types

N/A

3.1.3.2.11.4 Attributes

N/A

3.1.3.2.11.5 Operations

3.1.3.2.11.5.1 next_one

3.1.3.2.11.5.1.1 Brief Rationale

The next_one operation provides the mechanism to retrieve the next EventRegistrant.

3.1.3.2.11.5.1.2 Synopsis

3.1.3.2.11.5.1.3 Behavior

The next_one operation shall return the next EventRegistrant in the sequence.

3.1.3.2.11.5.1.4 Returns

This operation returns a boolean that signifies whether or not there is a next element in the
sequence.

3.1.3.2.11.5.1.5 Exceptions/Errors

N/A

3.1.3.2.11.5.2 next_n

3.1.3.2.11.5.2.1 Brief Rationale

The next_n operation provides the mechanism to retrieve the next n EventRegistrant.

3.1.3.2.11.5.2.2 Synopsis

3.1.3.2.11.5.2.3 Behavior

The next_n operation shall return the next how_many EventRegistrant in the sequence.

boolean next_one (out EventChannelManager::EventRegistrant er);

boolean next_n (in unsigned long how_many, out
EventChannelManager::EventRegistrantList erl);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-103

3.1.3.2.11.5.2.4 Returns

This operation returns a boolean that signifies whether or not there are elements in the sequence.

3.1.3.2.11.5.2.5 Exceptions/Errors

N/A

3.1.3.2.11.5.3 destroy

3.1.3.2.11.5.3.1 Brief Rationale

The destroy operation destroys the iterator.

3.1.3.2.11.5.3.2 Synopsis

3.1.3.2.11.5.3.3 Behavior

The destroy operation shall destroy the iterator.

3.1.3.2.11.5.3.4 Returns

N/A

3.1.3.2.11.5.3.5 Exceptions/Errors

N/A

3.1.3.2.12 EventChannelManager

3.1.3.2.12.1 Description

The EventChannelManager interface provides the ability to more easily interact with Event
Channels. The EventChannelManager interface UML is depicted in Figure 3-31:
EventChannelManager Interface UML.

3.1.3.2.12.2 UML

Figure 3-31: EventChannelManager Interface UML

3.1.3.2.12.3 Types

This section describes the types defined in the interface EventChannelManager.

void destroy ();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-104

3.1.3.2.12.3.1 EventChannelInfo

This structure describes an event channel.

3.1.3.2.12.3.2 EventChannelInfoList

This is a sequence of EventChannelInfo elements.

3.1.3.2.12.3.3 EventRegistrant

This structure is used to store the entities registering with an event channel.

3.1.3.2.12.3.4 EventRegistrantList

This is a sequence of EventRegistrant elements.

3.1.3.2.12.3.5 EventRegistration

This type is used to create an event channel registration.

3.1.3.2.12.3.6 EventChannelReg

This type is used to describe event channel registrations.

3.1.3.2.12.3.7 ChannelAlreadyExists

This exception is used when an event channel already exists.

3.1.3.2.12.3.8 ChannelDoesNotExist

This exception is used when an event channel does not exist.

Struct EventChannelInfo
{
 string channel_name;
 long reg_count;
};

typedef sequence<EventChannelInfo> EventChannelInfoList;

struct EventRegistrant
{
 string channel_name;
 string reg_id;
};

Typedef sequence<EventRegistrant> EventRegistrantList;

struct EventRegistration
{
 string channel_name;
 string reg_id;
};

struct EventChannelReg {
 EventRegistration reg;
 CosEventChannelAdmin::EventChannel channel;
};

exception ChannelAlreadyExists();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-105

3.1.3.2.12.3.9 InvalidChannelName

This exception is used when an event channel name is invalid.

3.1.3.2.12.3.10 OperationFailed

This exception is used when an operation failed.

3.1.3.2.12.3.11 OperationNotAllowed

This exception is used when an operation is not allowed.

3.1.3.2.12.3.12 ServiceUnavailable

This exception is used when a service is unavailable.

3.1.3.2.12.3.13 RegistrationsExists

This exception is used when registrations exist.

3.1.3.2.12.3.14 RegistrationAlreadyExists

This exception is used when a registration already exists.

3.1.3.2.12.3.15 RegistrationDoesNotExist

This exception is used when a registration does not exist.

3.1.3.2.12.4 Attributes

N/A

3.1.3.2.12.5 Operations

3.1.3.2.12.5.1 create

3.1.3.2.12.5.1.1 Brief Rationale

The create operation creates an event channel.

3.1.3.2.12.5.1.2 Synopsis

3.1.3.2.12.5.1.3 Behavior

The create operation creates a new event channel.

exception ChannelDoesNotExist();

exception InvalidChannelName();

exception OperationFailed();

exception OperationNotAllowed();

exception ServiceUnavailable();

exception RegistrationsExists();

exception RegistrationAlreadyExists();

exception RegistrationDoesNotExist();

EventChannel create (in string channel_name) raises
(ChannelAlreadyExists, OperationNotAllowed, OperationFailed,
ServiceUnavailable);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-106

3.1.3.2.12.5.1.4 Returns

This operation returns a pointer to the event channel that was created.

3.1.3.2.12.5.1.5 Exceptions/Errors

The create operation raises the ChannelAlreadyExists exception when the named event channel
already exists.

The create operation raises the OperationNotAllowed exception when the event channel cannot
be created.

The create operation raises the OperationFailed when the creation of the event channel is
allowed by cannot be created.

The create operation raises the ServiceUnavailable exception when the event service is not
available.

3.1.3.2.12.5.2 createForRegistrations

3.1.3.2.12.5.2.1 Brief Rationale

The createForRegistrations operation creates an Event Channel in the Domain associated with
the Manager. Event Channel names must be unique across the Domain. If this channel is used
by registrations when all registrants have unregistered the channel resources will be released.

3.1.3.2.12.5.2.2 Synopsis

3.1.3.2.12.5.2.3 Behavior

The createForRegistrations operation creates an Event Channel in the Domain associated with
the Manager. Event Channel names must be unique across the Domain. If this channel is used
by registrations when all registrants have unregistered the channel resources will be released.

3.1.3.2.12.5.2.4 Returns

This operation returns a pointer to the event channel that was created.

3.1.3.2.12.5.2.5 Exceptions/Errors

The createForRegistrations operation raises the ChannelAlreadyExists exception when the
named event channel already exists.

The createForRegistrations operation raises the OperationNotAllowed exception when the event
channel cannot be created.

The createForRegistrations operation raises the OperationFailed when the creation of the event
channel is allowed by cannot be created.

The createForRegistrations operation raises the ServiceUnavailable exception when the event
service is not available.

3.1.3.2.12.5.3 markForRegistrations

3.1.3.2.12.5.3.1 Brief Rationale

The markForRegistrations operation marks a channel for deletion when all registrants have
unregistered.

EventChannel createForRegistrations(in string channel_name)
raises (ChannelAlreadyExists, OperationNotAllowed,
OperationFailed, ServiceUnavailable);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-107

3.1.3.2.12.5.3.2 Synopsis

3.1.3.2.12.5.3.3 Behavior

The markForRegistrations operation marks a channel for deletion when all registrants have
unregistered.

3.1.3.2.12.5.3.4 Returns

N/A

3.1.3.2.12.5.3.5 Exceptions/Errors

The markForRegistrations operation raises the ChannelDoesNotExist exception when the named
event channel does not exist.

The markForRegistrations operation raises the OperationNotAllowed exception when the event
channel cannot be created.

The markForRegistrations operation raises the OperationFailed when the creation of the event
channel is allowed by cannot be created.

The markForRegistrations operation raises the ServiceUnavailable exception when the event
service is not available.

3.1.3.2.12.5.4 release

3.1.3.2.12.5.4.1 Brief Rationale

The release function releases the event channel from the domain. Mark the event channel for
removal and disallow any future registrations against the channel. When all existing registrants
are unregistered, it then removes the channel.

3.1.3.2.12.5.4.2 Synopsis

3.1.3.2.12.5.4.3 Behavior

The release function releases the event channel from the domain. Mark the event channel for
removal and disallow any future registrations against the channel. When all existing registrants
are unregistered, it then removes the channel.

3.1.3.2.12.5.4.4 Returns

N/A

3.1.3.2.12.5.4.5 Exceptions/Errors

The release operation raises the ChannelAlreadyExists exception when the named event channel
already exists.

The release operation raises the RegistrationsExists exception when the registration is already
marked for release.

void markForRegistrations(in string channel_name)
raises (ChannelDoesNotExist, OperationNotAllowed,
OperationFailed, ServiceUnavailable);

void release(in string channel_name) raises (
ChannelDoesNotExist, RegistrationsExists, OperationNotAllowed,
OperationFailed, ServiceUnavailable);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-108

The release operation raises the OperationNotAllowed exception when the event channel cannot
be created.

The release operation raises the OperationFailed when the creation of the event channel is
allowed by cannot be created.

The release operation raises the ServiceUnavailable exception when the event service is not
available.

3.1.3.2.12.5.5 registerResource

3.1.3.2.12.5.5.1 Brief Rationale

The registerResource function registers an association with an Event Channel. It looks for an
existing Event Channel object being managed. If the Event Channel is not found, it then adds a
new Event Channel object. Finally, it registers the publisher member (pub) of the EventPublisher
with the event channel.

3.1.3.2.12.5.5.2 Synopsis

3.1.3.2.12.5.5.3 Behavior

The registerResource function registers an association with an Event Channel. It looks for an
existing Event Channel object being managed. If the Event Channel is not found, it then adds a
new Event Channel object. Finally, it registers the publisher member (pub) of the EventPublisher
with the event channel.

3.1.3.2.12.5.5.4 Returns

This operation returns a pointer to the event channel registration that was created.

3.1.3.2.12.5.5.5 Exceptions/Errors

The registerResource operation raises the InvalidChannelName exception when the named event
channel is invalid.

The registerResource operation raises the RegistrationAlreadyExists exception when the
specified registration already exists.

The registerResource operation raises the OperationNotAllowed exception when the event
channel cannot be created.

The registerResource operation raises the OperationFailed when the creation of the event
channel is allowed by cannot be created.

The registerResource operation raises the ServiceUnavailable exception when the event service
is not available.

3.1.3.2.12.5.6 unregister

3.1.3.2.12.5.6.1 Brief Rationale

The unregister operation unregisters an event channel and invalidates the context.

EventChannelReg registerResource(in EventRegistration req)
raises (InvalidChannelName, RegistrationAlreadyExists,
OperationFailed, OperationNotAllowed, ServiceUnavailable);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-109

3.1.3.2.12.5.6.2 Synopsis

3.1.3.2.12.5.6.3 Behavior

The unregister operation unregisters an event channel and invalidates the context.

3.1.3.2.12.5.6.4 Returns

N/A

3.1.3.2.12.5.6.5 Exceptions/Errors

The unregister operation raises the ChannelDoesNotExist exception when the named event
channel does not exist.

The unregister operation raises the RegistrationDoesNotExist exception when the named
registration does not exist.

The unregister operation raises the ServiceUnavailable exception when the event service is not
available.

3.1.3.2.12.5.7 listChannels

3.1.3.2.12.5.7.1 Brief Rationale

The listChannels operation lists all the available event channels.

3.1.3.2.12.5.7.2 Synopsis

3.1.3.2.12.5.7.3 Behavior

The listChannels operation lists all the available event channels.

3.1.3.2.12.5.7.4 Returns

N/A

3.1.3.2.12.5.7.5 Exceptions/Errors

N/A

3.1.3.2.12.5.8 listRegistrants

3.1.3.2.12.5.8.1 Brief Rationale

The listRegistrants operation lists all registrants.

3.1.3.2.12.5.8.2 Synopsis

3.1.3.2.12.5.8.3 Behavior

The listRegistrants operation lists all the available event channels.

void unregister(in EventRegistration reg) raises (
ChannelDoesNotExist, RegistrationDoesNotExist,
ServiceUnavailable);

void listChannels(in unsigned long how_many, out
EventChannelInfoList elist, out EventChannelInfoIterator eiter);

void listRegistrants(in string channel_name, in unsigned long
how_many, out EventRegistrantList rlist, out
EventRegistrantIterator riter);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-110

3.1.3.2.12.5.8.4 Returns

N/A

3.1.3.2.12.5.8.5 Exceptions/Errors

N/A

3.1.3.2.13 ApplicationRegistrar

3.1.3.2.13.1 Description

The ApplicationRegistrar interface provides the ability for Components to register themselves
upon deployment. The ApplicationRegistrar also provides a pointer to the host DomainManager
and Application objects. If the Application is deployed with the creation property AWARE set to
False, then the DomainManager object and the Application object are both invalid. The
Application Registrar inherits from the CosNaming::NamingContext interface to provide
backwards-compatibility with older components that register with a naming context on the
Naming Service rather than the Application Registrar. The ApplicationRegistrar interface UML
is depicted in Figure 3-32: ApplicationRegistrar Interface UML.

3.1.3.2.13.2 UML

Figure 3-32: ApplicationRegistrar Interface UML

3.1.3.2.13.3 Types

N/A

3.1.3.2.13.4 Attributes

3.1.3.2.13.4.1 app

This readonly attribute is the Application onto which the Component is registering.

3.1.3.2.13.4.2 domMgr

This readonly attribute is the Domain Manager onto which the Component is registering.

readonly attribute Application app;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-111

3.1.3.2.13.5 Operations

3.1.3.2.13.5.1 registerComponent

3.1.3.2.13.5.1.1 Brief Rationale

The registerComponent operation provides the mechanism for a Component to self-register onto
the Application.

3.1.3.2.13.5.1.2 Synopsis

3.1.3.2.13.5.1.3 Behavior

The registerComponent operation registers the Component whose reference is the obj argument
onto the Application.

3.1.3.2.13.5.1.4 Returns

N/A

3.1.3.2.13.5.1.5 Exceptions/Errors

The registerComponent operation shall raise the CF InvalidObjectReference when the obj
argument is an invalid object reference.

The registerComponent operation shall raise the CF DuplicateName when the Name argument
has already been used to register a Component onto this Application instance.

3.1.3.3 Base Device Interfaces

The device interfaces are for the implementation and management of logical devices within the
domain. The devices within the domain may be simple devices with no loadable, executable, or
aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice and ExecutableDevice.

3.1.3.3.1 Device

3.1.3.3.1.1 Description

A device is a type of resource and has all the requirements associated with the Resource
interface. The Device interface defines additional capabilities and attributes for any logical
device in the domain. A logical device is a software abstraction for a physical hardware device
and provides the following attributes and operations:

1. Software Profile Attribute – The SPD referenced by this profile element (Profile
Descriptor) defines the logical device capabilities (data/command uses and
provides ports, configure and query properties, capacity properties, status
properties, etc.), which could be a subset of the hardware device’s capabilities.

REDHAWK does not return a profile element. It returns an absolute filename.

readonly attribute DomainManager domMgr;

void registerComponent (in string Name, in Resource obj) raises
(InvalidObjectReference, DuplicateName);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-112

2. State Management & Status Attributes – This information describes the
administrative, usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) are obtained from the device. A device may have multiple
capacities which need to be allocated, since each device has its own unique
capacity model which is described in the associated software profile.

The Device Interface UML is depicted in Figure 3-33: Device Interface UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-113

3.1.3.3.1.2 UML

Figure 3-33: Device Interface UML

removed softwareProfile

SCA version 2.2.2, REDHAWK 2.2 LTS

3-114

3.1.3.3.1.3 Types

3.1.3.3.1.3.1 InvalidState

The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the device is in.

3.1.3.3.1.3.2 InvalidCapacity

The InvalidCapacity exception returns the capacities that are not valid for this device.

3.1.3.3.1.3.3 AdminType

This is a CORBA IDL enumeration type that defines a device's administrative states. The
administrative state indicates the permission to use or prohibition against using the device.

3.1.3.3.1.3.4 OperationalType

This is a CORBA IDL enumeration type that defines a device’s operational states. The
operational state indicates whether or not the object is functioning.

3.1.3.3.1.3.5 UsageType

This is a CORBA IDL enumeration type that defines the device’s usage states. The usage state
indicates which of the following states a device is in:

IDLE – not in use

ACTIVE – in use, with capacity remaining for allocation, or

BUSY – in use, with no capacity remaining for allocation

exception InvalidState {string msg;};

exception InvalidCapacity {string msg; Properties capacities;};

enum AdminType
{
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
};

enum OperationalType
{
 ENABLED,
 DISABLED
};

enum UsageType
{
 IDLE,
 ACTIVE,
 BUSY
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-115

3.1.3.3.1.4 Attributes

3.1.3.3.1.4.1 usageState

The readonly usageState attribute shall contain the device’s usage state (IDLE, ACTIVE, or
BUSY). UsageState indicates whether or not a device is actively in use at a specific instant, and
if so, whether or not it has spare capacity for allocation at that instant.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the usageState attribute changes. For this event:

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “USAGE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the usageState attribute before the state
change.

5. The stateChangeTo field is the value of the usageState attribute after the state
change.

3.1.3.3.1.4.2 adminState

The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device’s admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is
only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”
is only effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.
Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of devices (if it has any). The adminState shall then transition to the LOCKED state
when the device’s usageState is IDLE and its entire aggregation of devices are LOCKED. Refer
to Figure 3-34: State Transition Diagram for adminState for an illustration of the above state
behavior.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the adminState attribute changes. For this event:

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “ADMINISTRATIVE_STATE_EVENT”.

4. The stateChangeFrom field is the value of the adminState attribute before the
state change.

5. The stateChangeTo field is the value of the adminState attribute after the state
change.

readonly attribute UsageType usageState;

attribute AdminType adminState;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-116

Figure 3-34: State Transition Diagram for adminState

3.1.3.3.1.4.3 operationalState

The readonly operationalState attribute shall contain the device’s operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

The device shall send a StateChangeEventType event to the Incoming Domain Management
event channel, whenever the operationalState attribute changes. For this event:

1. The producerId field is the identifier attribute of the device.

2. The sourceId field is the identifier attribute of the device.

3. The stateChangeCategory field is “OPERATIONAL_STATE_EVENT”.

4. The stateChangeFrom field is the value of the operationalState attribute before
the state change.

5. The stateChangeTo field is the value of the operationalState attribute after the
state change.

The softwareProfile attribute has been removed.

3.1.3.3.1.4.4 label

The readonly label attribute shall contain the device’s label. The label attribute is the meaningful
name given to a device. The attribute could convey location information within the system (e.g.,
audio1, serial1, etc.).

readonly attribute OperationalType operationalState;

readonly attribute string label;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-117

3.1.3.3.1.4.5 compositeDevice

The readonly compositeDevice attribute shall contain the object reference of the aggregate
device when this device is a parent device. The readonly compositeDevice attribute shall contain
a nil CORBA object reference when this device is not a parent device.

3.1.3.3.1.5 Operations

3.1.3.3.1.5.1 allocateCapacity

3.1.3.3.1.5.1.1 Brief Rationale

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

3.1.3.3.1.5.1.2 Synopsis

3.1.3.3.1.5.1.3 Behavior

The allocateCapacity operation shall reduce the current capacities of the device based upon the
input capacities parameter, when the device’s adminState is UNLOCKED, device’s
operationalState is ENABLED, and device’s usageState is not BUSY.

The allocateCapacity operation shall set the Device’s usageState attribute to BUSY, when the
device determines that it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for allocation (reference Figure 3-35: State Transition Diagram for
allocateCapacity and deallocateCapacity).

The allocateCapacity operation shall only accept properties for the input capacities parameter
which are simple properties whose kindtype is allocation and whose action element is external
contained in the component’s SPD.

3.1.3.3.1.5.1.4 Returns

The allocateCapacity operation shall return TRUE, if the capacities have been allocated, or
FALSE, if not allocated.

3.1.3.3.1.5.1.5 Exceptions/Errors

The allocateCapacity operation shall raise the InvalidCapacity exception, when the input
capacities parameter contains invalid properties or when attributes of those CF Properties contain
an unknown id or a value of the wrong data type.

The allocateCapacity operation shall raise the InvalidState exception, when the Device’s
adminState is not UNLOCKED or operationalState is DISABLED.

3.1.3.3.1.5.2 deallocateCapacity

3.1.3.3.1.5.2.1 Brief Rationale

The deallocateCapacity operation provides the mechanism to return capacities back to the
device, making them available to other users.

3.1.3.3.1.5.2.2 Synopsis

readonly attribute AggregateDevice compositeDevice;

boolean allocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

void deallocateCapacity (in Properties capacities) raises
(InvalidCapacity, InvalidState);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-118

3.1.3.3.1.5.2.3 Behavior

The deallocateCapacity operation shall adjust the current capacities of the device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the device’s capacities are still being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the device’s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in
3.1.3.3.1.4.2 adminState.

Figure 3-35: State Transition Diagram for allocateCapacity and deallocateCapacity

3.1.3.3.1.5.2.4 Returns

This operation does not return any value.

3.1.3.3.1.5.2.5 Exceptions/Errors

The deallocateCapacity operation shall raise the InvalidCapacity exception when the capacity ID
is invalid, or the capacity value is the wrong type. The InvalidCapacity exception msg parameter
describes the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the device’s
adminState is LOCKED or operationalState is DISABLED.

3.1.3.3.1.5.3 releaseObject

3.1.3.3.1.5.3.1 Description

This section describes additional release behavior for a logical device.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-119

3.1.3.3.1.5.3.2 Synopsis

3.1.3.3.1.5.3.3 Behavior

The following behavior is in addition to the LifeCycle::releaseObject operation behavior.

The releaseObject operation shall assign the LOCKED state to the Device adminState attribute,
when the Device adminState attribute is UNLOCKED.

The releaseObject operation shall call the releaseObject operation on all those devices that are
contained within the AggregateDevice devices attribute, when this device is a parent device.

The releaseObject operation shall cause the removal of the device from the Device
compositeDevice attribute, when this device is a child device.

The releaseObject operation shall cause the device to be unavailable and released from the
CORBA environment when the Device adminState attribute transitions to LOCKED. The
transition to the LOCKED state signifies that the Device usageState attribute is IDLE and, if the
device is a parent device, that its child devices have been removed.

The releaseObject operation shall unregister its device from its device manager.

The following three figures (Figure 3-36: Release Aggregated Device Scenario, Figure 3-37:
Release Composite Device Scenario, Figure 3-38: Release Composite & Aggregated Device
Scenario) depict different release scenarios depending on the type of device and the state the
device is in.

Figure 3-36: Release Aggregated Device Scenario

void releaseObject() raises (ReleaseError);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-120

Figure 3-37: Release Composite Device Scenario

SCA version 2.2.2, REDHAWK 2.2 LTS

3-121

Figure 3-38: Release Composite & Aggregated Device Scenario

3.1.3.3.1.5.3.4 Returns

The releaseObject operation does not return a value.

3.1.3.3.1.5.3.5 Exceptions/Errors

The releaseObject operation shall raise the ReleaseError exception when releaseObject is not
successful in releasing a logical device due to internal processing errors that occurred within the
device being released.

3.1.3.3.2 LoadableDevice

3.1.3.3.2.1 Description

This interface extends the Device interface by adding software loading and unloading behavior to
a device. The LoadableDevice Interface UML is depicted in Figure 3-39: LoadableDevice
Interface UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-122

3.1.3.3.2.2 UML

Figure 3-39: LoadableDevice Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-123

3.1.3.3.2.3 Types

3.1.3.3.2.3.1 LoadType

The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element’s implementation element, which is defined in the
companion Domain Profile documentation’s section A.2.1 Software Package.

3.1.3.3.2.3.2 InvalidLoadKind

The InvalidLoadKind exception indicates that the device is unable to load the type of file
designated by the loadKind parameter.

3.1.3.3.2.3.3 LoadFail

The LoadFail exception indicates that the load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the device. The
error number shall indicate a CF ErrorNumberType. The message is component-dependent,
providing additional information describing the reason for the error.

3.1.3.3.2.4 Attributes

N/A

3.1.3.3.2.5 Operations

3.1.3.3.2.5.1 load

3.1.3.3.2.5.1.1 Brief Rationale

The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the device, if the device is an executable
device.

3.1.3.3.2.5.1.2 Synopsis

3.1.3.3.2.5.1.3 Behavior

The load operation shall load the file identified by the input filename parameter on the device
based upon the input loadKind parameter. The input filename parameter is a pathname relative
to the file system identified by the input FileSystem parameter.

enum LoadType
{
 KERNEL_MODULE,
 DRIVER,
 SHARED_LIBRARY,
 EXECUTABLE
};

exception InvalidLoadKind{};

exception LoadFail { ErrorNumberType errorNumber; string msg; };

void load (in FileSystem fs, in string fileName, in LoadType
loadKind) raises (InvalidState, InvalidLoadKind,
InvalidFileName, LoadFail);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-124

The REDHAWK provided implementations of LoadableDevice will
recursively load a directory if the fileName parameter refers to a directory.

The load operation shall support the load types as stated in the device’s software profile
LoadType allocation properties.

REDHAWK does not use the LoadType allocation properties to locate a
device that can support the requested load operation.

The REDHAWK provided implementations of LoadableDevice only support
the EXECUTABLE and SHARED_LIBRARY loadKind.

Multiple loads of the same file as indicated by the input fileName parameter shall not result in an
exception. However, the load operation should account for this multiple load so that the unload
operation behavior can be performed.

3.1.3.3.2.5.1.4 Returns

This operation does not return any value.

3.1.3.3.2.5.1.5 Exceptions/Errors

The load operation shall raise the InvalidState exception if upon entry the Device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.

The load operation shall raise the CF InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

The load operation shall raise the LoadFail exception when an attempt to load the device is
unsuccessful.

3.1.3.3.2.5.2 unload

3.1.3.3.2.5.2.1 Brief Rationale

The unload operation provides the mechanism to unload software that is currently loaded.

3.1.3.3.2.5.2.2 Synopsis

3.1.3.3.2.5.2.3 Behavior

The unload operation shall unload the file identified by the input fileName parameter from the
device when the number of unload requests matches the number of load requests for the
indicated file.

3.1.3.3.2.5.2.4 Returns

This operation does not return a value.

void unload (in string fileName) raises (InvalidState,
InvalidFileName);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-125

3.1.3.3.2.5.2.5 Exceptions/Errors

The unload operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is LOCKED or its operationalState attribute is DISABLED.

The unload operation shall raise the CF InvalidFileName exception when the file designated by
the input filename parameter cannot be found.

3.1.3.3.3 ExecutableDevice

3.1.3.3.3.1 Description

This interface extends the LoadableDevice interface by adding execute and terminate behavior to
a device. The ExecutableDevice Interface UML is depicted in Figure 3-40: ExecutableDevice
Interface UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-126

3.1.3.3.3.2 UML

Figure 3-40: ExecutableDevice Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-127

3.1.3.3.3.3 Types

3.1.3.3.3.3.1 InvalidProcess

The InvalidProcess exception indicates that a process, as identified by the processId parameter,
does not exist on this device. The errorNumber parameter shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

3.1.3.3.3.3.2 InvalidFunction

The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn’t been loaded on this device.

3.1.3.3.3.3.3 ProcessID_Type

The ProcessID_Type defines a process number within the system. The process number is unique
to the Processor operating system that created the process.

3.1.3.3.3.3.4 InvalidParameters

The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
The invalidParms parameter is a list of invalid parameters specified in the execute operation.

3.1.3.3.3.3.5 InvalidOptions

The InvalidOptions exception indicates the input options are invalid on the execute operation.
The invalidOpts parameter is a list of invalid options specified in the execute operation.

3.1.3.3.3.3.6 STACK_SIZE_ID

The STACK_SIZE_ID is the identifier for the ExecutableDevice::execute operation options
parameter. The value for a stack size shall be an unsigned long.

3.1.3.3.3.3.7 PRIORITY_ID

The PRIORITY_ID is the identifier for the ExecutableDevice::execute operation options
parameters. The value for a priority shall be an unsigned long.

3.1.3.3.3.3.8 ExecuteFail

The ExecuteFail exception indicates that the execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke
the execute function on the device. The error number shall indicate a CF ErrorNumberType
value. The message is component-dependent, providing additional information describing the
reason for the error.

exception InvalidProcess { ErrorNumberType errorNumber; string
msg; };

exception InvalidFunction{};

typedef long ProcessID_Type;

exception InvalidParameters { Properties invalidParms; };

exception InvalidOptions { Properties invalidOpts; };

Constant string STACK_SIZE_ID = “STACK_SIZE”;

Constant string PRIORITY_ID = “PRIORITY”;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-128

3.1.3.3.3.4 Attributes

N/A

3.1.3.3.3.5 Operations

3.1.3.3.3.5.1 execute

3.1.3.3.3.5.1.1 Brief Rationale

The execute operation provides the mechanism for starting up and executing a software
process/thread on a device.

3.1.3.3.3.5.1.2 Synopsis

3.1.3.3.3.5.1.3 Behavior

The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter is a
function or a file name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters to argv starting at index 1 as follows, argv (1)
maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so forth.
The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

3.1.3.3.3.5.1.4 Returns

The execute operation shall return a unique process ID for the process that it created.

3.1.3.3.3.5.1.5 Exceptions/Errors

The execute operation shall raise the InvalidState exception if upon entry the device's adminState
attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute is
DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the device.

The execute operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the device.

The execute operation shall raise the InvalidParameters exception when the input parameter ID
or value attributes are not valid strings.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with 3.1.3.3.3.3.6 STACK_SIZE_ID and 3.1.3.3.3.3.7 PRIORITY_ID.

exception ExecuteFail { ErrorNumberType errorNumber; string msg;
};

ProcessID_Type execute (in string name, in Properties options,
in Properties parameters) raises (InvalidState, InvalidFunction,
InvalidParameters, InvalidOptions, InvalidFileName,
ExecuteFail);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-129

The execute operation shall raise the ExecuteFail exception when the operating system “execute”
function for the device is not successful.

3.1.3.3.3.5.2 terminate

3.1.3.3.3.5.2.1 Brief Rationale

The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

3.1.3.3.3.5.2.2 Synopsis

3.1.3.3.3.5.2.3 Behavior

The terminate operation shall terminate the execution of the process/thread designated by the
processId input parameter on the device.

3.1.3.3.3.5.2.4 Returns

This operation does not return a value.

3.1.3.3.3.5.2.5 Exceptions/Errors

The terminate operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is LOCKED or its operationalState attribute is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the process Id does not
exist for the device.

3.1.3.3.3.5.3 executeLinked

3.1.3.3.3.5.3.1 Brief Rationale

The executeLinked operation provides the mechanism for starting up and executing a software
process/thread on a device with the associated dependencies.

3.1.3.3.3.5.3.2 Synopsis

void terminate (in ProcessID_Type processId) raise
(InvalidProcess, InvalidState);

ProcessID_Type executeLinked (in string name, in Properties
options, in Properties parameters, in StringSequence deps)
raises (InvalidState, InvalidFunction, InvalidParameters,
InvalidOptions, InvalidFileName, ExecuteFail);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-130

3.1.3.3.3.5.3.3 Behavior

The executeLinked operation shall execute the function or file identified by the input name
parameter using the input parameters and options parameters. Whether the input name parameter
is a function or a file name is device-implementation-specific.

The executeLinked operation shall convert the input parameters (id/value string pairs) parameter
to the standard argv of the POSIX exec family of functions, where argv(0) is the function name.
The execute operation shall map the input parameters to argv starting at index 1 as follows, argv
(1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so forth.
The execute operation passes argv through the operating system “execute” function.

The executeLinked operation input options parameters are STACK_SIZE_ID and
PRIORITY_ID. The executeLinked operation shall use these options, when specified, to set the
operating system’s process/thread stack size and priority, for the executable image of the given
input name parameter.

The executeLinked operation input deps is a list of all softpkg dependencies that the deployed
Component has a runtime dependency with. The executeLinked operation restores the
LD_LIBRARY_PATH, PYTHONPATH, and CLASSPATH to their original state when the
ExecutableDevice was initially started. It then modifies each of these system variables if the
softpkg dependency is a C/C++ library, Python package, or Java jar, respectively, before the
forking of the softpkg described by the argument name.

3.1.3.3.3.5.3.4 Returns

The executeLinked operation shall return a unique process ID for the process that it created.

3.1.3.3.3.5.3.5 Exceptions/Errors

The executeLinked operation shall raise the InvalidState exception if upon entry the device's
adminState attribute is either LOCKED or SHUTTING_DOWN or its operationalState attribute
is DISABLED.

The executeLinked operation shall raise the InvalidFunction exception when the function
indicated by the input name parameter does not exist for the device.

The executeLinked operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the device.

The executeLinked operation shall raise the InvalidParameters exception when the input
parameter ID or value attributes are not valid strings.

The executeLinked operation shall raise the InvalidOptions exception when the input options
parameter does not comply with 3.1.3.3.3.3.6 STACK_SIZE_ID and 3.1.3.3.3.3.7
PRIORITY_ID.

The executeLinked operation shall raise the ExecuteFail exception when the operating system
“execute” function for the device is not successful.

3.1.3.3.4 AggregateDevice

3.1.3.3.4.1 Description

The AggregateDevice interface provides the required behavior that is needed to add and remove
child devices from a parent device. This interface may be provided via inheritance or as a

SCA version 2.2.2, REDHAWK 2.2 LTS

3-131

“provides port” for any device that is used as a parent device. Child devices use this interface to
add or remove themselves to a parent device when being created or torn-down. The
AggregateDevice Interface UML is depicted in Figure 3-41: AggregateDevice Interface UML.

3.1.3.3.4.2 UML

Figure 3-41: AggregateDevice Interface UML

REDHAWK provides the interfaces AggregatePlainDevice,
AggregateLoadableDevice, and AggregateExecutableDevice, as convenience
interfaces that combine Device, LoadableDevice, and ExecutableDevice with
AggregateDevice.

3.1.3.3.4.3 Types

N/A

3.1.3.3.4.4 Attributes

3.1.3.3.4.4.1 devices

The readonly devices attribute shall contain a list of devices that have been added to this device
or a sequence length of zero if the device has no aggregation relationships with other devices.

3.1.3.3.4.5 Operations

3.1.3.3.4.5.1 addDevice

3.1.3.3.4.5.1.1 Brief Rationale

The addDevice operation provides the mechanism to associate a device with another device.
When a device changes state or it is being torn down, its associated devices are affected.

3.1.3.3.4.5.1.2 Synopsis

readonly attribute DeviceSequence devices;

void addDevice (in Device associatedDevice) raises
(InvalidObjectReference);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-132

3.1.3.3.4.5.1.3 Behavior

The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice’s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDevice is ignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice’s devices attribute.

3.1.3.3.4.5.1.4 Returns

This operation does not return any value.

3.1.3.3.4.5.1.5 Exceptions/Errors

The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference.

3.1.3.3.4.5.2 removeDevice

3.1.3.3.4.5.2.1 Brief Rationale

The removeDevice operation provides the mechanism to disassociate a device from another
device.

3.1.3.3.4.5.2.2 Synopsis

3.1.3.3.4.5.2.3 Behavior

The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice’s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice devices attribute.

3.1.3.3.4.5.2.4 Returns

This operation does not return any value.

3.1.3.3.4.5.2.5 Exceptions/Errors

The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice parameter is a nil CORBA object reference or does not exist in the
AggregateDevice devices attribute.

3.1.3.3.5 AggregateExecutableDevice

3.1.3.3.5.1 Description

The AggregateExecutableDevice interface is a convenience interface that combines the
ExecutableDevice interface with the AggregateDevice interface. The
AggregateExecutableDevice Interface UML is depicted in Figure 3-42:
AggregateExecutableDevice Interface UML.

void removeDevice (in Device associatedDevice) raises
(InvalidObjectReference);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-133

3.1.3.3.5.2 UML

Figure 3-42: AggregateExecutableDevice Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-134

3.1.3.3.6 AggregateLoadableDevice

3.1.3.3.6.1 Description

The AggregateLoadableDevice interface is a convenience interface that combines the
LoadableDevice interface with AggregateDevice interface. The AggregateLoadableDevice
Interface UML is depicted in Figure 3-43: AggregateLoadableDevice Interface UML.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-135

3.1.3.3.6.2 UML

Figure 3-43: AggregateLoadableDevice Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-136

3.1.3.3.7 AggregatePlainDevice

3.1.3.3.7.1 Description

The AggregatePlainDevice interface is a convenience interface that combines the Device
interface with the AggregateDevice interface. The AggregatePlainDevice Interface UML is
depicted in Figure 3-44: AggregatePlainDevice Interface UML.

3.1.3.3.7.2 UML

Figure 3-44: AggregatePlainDevice Interface UML

3.1.3.4 Framework Services Interfaces

Framework Services Interfaces describe the SCA federated file system interactions.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-137

3.1.3.4.1 File

3.1.3.4.1.1 Description

The File interface provides the ability to read and write files residing within a compliant,
distributed file system. A file can be thought of conceptually as a sequence of octets with a
current filePointer describing where the next read or write will occur. This filePointer points to
the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C file interface.

3.1.3.4.1.2 UML

Figure 3-45: File Interface UML

3.1.3.4.1.3 Types

3.1.3.4.1.3.1 IOException

The IOException exception indicates an error occurred during a read or write operation to a file.
The error number shall indicate a CF ErrorNumberType value. The message is component-
dependent, providing additional information describing the reason for the error.

3.1.3.4.1.3.2 InvalidFilePointer

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
file size.

3.1.3.4.1.4 Attributes

3.1.3.4.1.4.1 fileName

The readonly fileName attribute shall contain the pathname used as the input fileName parameter
of the FileSystem::create operation when the file was created .

3.1.3.4.1.4.2 filePointer

The readonly filePointer attribute shall contain the current file position. The filePointer attribute
value dictates where the next read or write will occur.

exception IOException { ErrorNumberType errorNumber; string msg;
};

exception InvalidFilePointer{};

readonly attribute string fileName;

readonly attribute unsigned long filePointer;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-138

3.1.3.4.1.5 Operations

3.1.3.4.1.5.1 read

3.1.3.4.1.5.1.1 Brief Rationale

Applications require the read operation in order to retrieve data from remote files.

3.1.3.4.1.5.1.2 Synopsis

3.1.3.4.1.5.1.3 Behavior

The read operation shall read, from the referenced file, the number of octets specified by the
input length parameter and advance the value of the filePointer attribute by the number of octets
actually read. The read operation shall read less than the number of octets specified in the input-
length parameter, when an end of file is encountered.

3.1.3.4.1.5.1.4 Returns

The read operation shall return via the out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a zero-length CF OctetSequence.

3.1.3.4.1.5.1.5 Exceptions/Errors

The read operation shall raise the IOException when a read error occurs.

3.1.3.4.1.5.2 write

3.1.3.4.1.5.2.1 Brief Rationale

Applications require the write operation in order to write data to remote files.

3.1.3.4.1.5.2.2 Synopsis

3.1.3.4.1.5.2.3 Behavior

The write operation shall write data to the file referenced. The write operation shall increment
the filePointer attribute to reflect the number of octets written, when the operation is successful.
If the write is unsuccessful, the value of the filePointer attribute shall maintain or be restored to
its value prior to the write operation call. If the file was opened using the FileSystem::open
operation with an input read_Only parameter value of TRUE, writes to the file are considered to
be in error.

3.1.3.4.1.5.2.4 Returns

This operation does not return any value.

3.1.3.4.1.5.2.5 Exceptions/Errors

The write operation shall raise the IOException when a write error occurs.

3.1.3.4.1.5.3 sizeOf

3.1.3.4.1.5.3.1 Brief Rationale

An application may need to know the size of a file in order to determine memory allocation
requirements.

3.1.3.4.1.5.3.2 Synopsis

void read (out OctetSequence data, in unsigned long length)
raises (IOException);

void write (in OctetSequence data) raises (IOException);

unsigned long sizeOf() raises (FileException);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-139

3.1.3.4.1.5.3.3 Behavior

There is no significant behavior beyond the behavior described by the following section.

3.1.3.4.1.5.3.4 Returns

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.4.1.5.3.5 Exceptions/Errors

The sizeOf operation shall raise the CF FileException when a file-related error occurs (e.g., file
does not exist anymore).

3.1.3.4.1.5.4 close

3.1.3.4.1.5.4.1 Brief Rationale

The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.4.1.5.4.2 Synopsis

3.1.3.4.1.5.4.3 Behavior

The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

3.1.3.4.1.5.4.4 Returns

This operation does not return any value.

3.1.3.4.1.5.4.5 Exceptions/Errors.

The close operation shall raise the CF FileException when it cannot successfully close the file.

3.1.3.4.1.5.5 setFilePointer

3.1.3.4.1.5.5.1 Brief Rationale

The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.3.4.1.5.5.2 Synopsis

3.1.3.4.1.5.5.3 Behavior

The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

3.1.3.4.1.5.5.4 Returns

This operation does not return any value.

3.1.3.4.1.5.5.5 Exceptions/Errors

The setFilePointer operation shall raise the CF FileException when the file pointer for the
referenced file cannot be set to the value of the input filePointer parameter.

The setFilePointer operation shall raise the InvalidFilePointer exception when the value of the
filePointer parameter exceeds the file size.

3.1.3.4.2 FileSystem

3.1.3.4.2.1 Description

The FileSystem interface defines CORBA operations that enable remote access to a physical file
system (refer to Figure 3-46: FileSystem Interface UML).

void close() raises (FileException);

void setFilePointer (in unsigned long filePointer) raises
(InvalidFilePointer, FileException);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-140

The DomainManager FileSystem “/” will map to the physical file system path
“$SDRROOT/dom/”.

The DeviceManager FileSystem “/” will map to the physical file system path
“$SDRROOT/dev/”.

The files stored on a file system may be plain files or directories. Valid individual filenames and
directory names shall be 40 characters or less. Valid characters for a filename or directory name
are the 62 alphanumeric characters (Upper, and lowercase letters and the numbers 0 to 9) in
addition to the “.” (period), “_” (underscore) and “-“ (hyphen) characters. The filenames “.”
(“dot”) and “..” (“dot-dot”) are invalid in the context of a file system.

Valid pathnames are structured according to the POSIX specification whose valid characters
include the “/” (forward slash) character in addition to the valid filename characters. A valid
pathname may consist of a single filename. A valid pathname shall not exceed 1024 characters.

3.1.3.4.2.2 UML

Figure 3-46: FileSystem Interface UML

SCA version 2.2.2, REDHAWK 2.2 LTS

3-141

3.1.3.4.2.3 Types

3.1.3.4.2.3.1 UnknownFileSystemProperties

The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.

3.1.3.4.2.3.2 fileSystemProperties Query Constants

Constants are defined to be used for the query operation (refer to 3.1.3.4.2.5.9 query).

3.1.3.4.2.3.3 FileInformationType

The FileInformationType indicates the information returned for a file. Not all the fields in the
FileInformationType are applicable for all file systems. At a minimum, the file system shall
support name, kind, and size information for a file. Examples of other file properties that may be
specified are created time, modified time, and last access time.

The name element of the FileInformationType indicates the simple name of the file. The kind
element of the FileInformationType indicates the type of the file entry. The size element of the
FileInformationType indicates the size in octets.

3.1.3.4.2.3.4 FileInformationSequence

The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.

3.1.3.4.2.3.5 FileType

The FileType indicates the type of file entry. A file system may have PLAIN or DIRECTORY
files and mounted file systems contained in a FileSystem.

3.1.3.4.2.3.6 CREATED_TIME_ID

To indicate the file creation time, add a CF::DataType with id “CREATED_TIME_ID” and
value unsigned long long containing the number of seconds since 00:00:00 UTC, Jan. 1, 1970 to
the fileProperties element of the FileInformationType.

exception UnknownFileSystemProperties { properties
invalidProperties; };

const string SIZE = “SIZE”;
const string AVAILABLE_SPACE = “AVAILABLE_SPACE”;

struct FileInformationType
{
 string name;
 FileType kind;
 unsigned long size;
 Properties fileProperties;
};

typedef sequence<FileInformationType>FileInformationSequence;

enum FileType
{
 PLAIN,
 DIRECTORY,
 FILE_SYSTEM
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-142

3.1.3.4.2.3.7 MODIFIED_TIME_ID

To indicate the file modification time, add a CF::DataType with id “MODIFIED_TIME_ID” and
value unsigned long long containing the number of seconds since 00:00:00 UTC, Jan. 1, 1970 to
the fileProperties element of the FileInformationType.

3.1.3.4.2.3.8 LAST_ACCESS_TIME_ID

To indicate the last time a file was accessed, add a CF::DataType with id
“LAST_ACCESS_TIME_ID” and value unsigned long long containing the number of seconds
since 00:00:00 UTC, Jan. 1, 1970 to the fileProperties element of the FileInformationType.

REDHAWK provides the following additional fileProperties.

 READ_ONLY : True if the file cannot be modified or deleted.

 IOR_AVAILABLE : A StringSequence of IORs for all File objects
currently open for the file. This can be used to close File object that
have been abandoned.

3.1.3.4.2.4 Attributes

N/A

3.1.3.4.2.5 Operations

3.1.3.4.2.5.1 remove

3.1.3.4.2.5.1.1 Brief Rationale

The remove operation provides the ability to remove a plain file from a file system.

3.1.3.4.2.5.1.2 Synopsis

3.1.3.4.2.5.1.3 Behavior

The remove operation shall remove the plain file which corresponds to the input fileName
parameter.

3.1.3.4.2.5.1.4 Returns

This operation does not return any value.

3.1.3.4.2.5.1.5 Exceptions/Errors

The remove operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

The remove operation shall raise the CF FileException when a file-related error occurs.

3.1.3.4.2.5.2 copy

3.1.3.4.2.5.2.1 Brief Rationale

The copy operation provides the ability to copy a plain file to another plain file.

Constant string CREATED_TIME_ID = “CREATED_TIME”;

Constant string MODIFIED_TIME_ID=”MODIFIED_TIME”;

Constant string LAST_ACCESS_TIME_ID=”LAST_ACCESS_TIME”;

void remove (in string fileName) raises (FileException,
InvalidFileName);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-143

3.1.3.4.2.5.2.2 Synopsis

3.1.3.4.2.5.2.3 Behavior

The copy operation shall copy the source file identified by the input sourceFileName parameter
to the destination file identified by the input destinationFileName parameter.

The copy operation shall overwrite the destination file, when the destination file already exists
and is not identical to the source file.

3.1.3.4.2.5.2.4 Returns

This operation does not return any value.

3.1.3.4.2.5.2.5 Exceptions/Errors

The copy operation shall raise the CF FileException exception when a file-related error occurs.

The copy operation shall raise the CF InvalidFileName exception when the destination pathname
is identical to the source pathname.

The copy operation shall raise the CF InvalidFileName exception when the sourceFileName or
destinationFileName input parameters are not valid absolute pathnames.

3.1.3.4.2.5.3 exists

3.1.3.4.2.5.3.1 Brief Rationale

The exists operation provides the ability to verify the existence of a file within a file system.

3.1.3.4.2.5.3.2 Synopsis

3.1.3.4.2.5.3.3 Behavior

The exists operation shall check to see if a file exists based on the fileName parameter.

3.1.3.4.2.5.3.4 Returns

The exists operation shall return TRUE if the file exists, or FALSE if it does not.

3.1.3.4.2.5.3.5 Exceptions/Errors

The exists operation shall raise the CF InvalidFileName exception when input fileName
parameter is not a valid absolute pathname.

3.1.3.4.2.5.4 list

3.1.3.4.2.5.4.1 Brief Rationale

The list operation provides the ability to obtain a list of files along with their information in the
file system according to a given search pattern. The list operation may be used to return
information for one file or for a set of files.

3.1.3.4.2.5.4.2 Synopsis

3.1.3.4.2.5.4.3 Behavior

The list operation shall support the “*” and “?” wildcard characters (used to match any sequence
of characters (including null) and any single character, respectively. These wildcards shall only

void copy (in string sourceFileName, in string
destinationFileName) raises (InvalidFileName, FileException);

boolean exists (in string fileName) raises (InvalidFileName);

FileInformationSequence list (in string pattern) raises
(FileException, InvalidFileName);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-144

be applied following the right-most forward-slash character (“/”) in the pathname contained in
the input pattern parameter.

3.1.3.4.2.5.4.4 Returns

The list operation shall return a FileInformationSequence for files that match the search pattern
specified in the input pattern parameter. The list operation shall return a zero-length sequence
when no file is found which matches the search pattern.

A pattern that does not end in a forward-slash character (“/”) and refers to a
directory will return a sequence of length one with the directory information.
A pattern that ends in a forward-slash character and refers to a directory will
return a FileInformationSequence for files within the directory.

3.1.3.4.2.5.4.5 Exceptions/Errors

The list operation shall raise the CF InvalidFileName exception when the input pattern parameter
is not an absolute pathname or cannot be interpreted due to unexpected characters.

The list operation shall raise the CF FileException when a file-related error occurs.

REDHAWK will not list hidden files (i.e., file names starting with “.”)

3.1.3.4.2.5.5 create

3.1.3.4.2.5.5.1 Brief Rationale

The create operation provides the ability to create a new plain file on the file system.

3.1.3.4.2.5.5.2 Synopsis

3.1.3.4.2.5.5.3 Behavior

The create operation shall create a new File based upon the input fileName parameter.

3.1.3.4.2.5.5.4 Returns

The create operation shall return a file object reference to the opened file.

3.1.3.4.2.5.5.5 Exceptions/Errors

The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3.1.3.4.2.5.6 open

3.1.3.4.2.5.6.1 Brief Rationale

The open operation provides the ability to open a plain file for read or write.

File create (in string fileName) raises (InvalidFileName,
FileException);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-145

3.1.3.4.2.5.6.2 Synopsis

3.1.3.4.2.5.6.3 Behavior

The open operation shall open the file referenced by the input fileName parameter. The open
operation shall open the file with read-only access when the input read_Only parameter is
TRUE. The open operation shall open the file for write access when the input read_Only
parameter is FALSE.

3.1.3.4.2.5.6.4 Returns

The open operation shall return a File instance on successful completion. The open operation
shall set the filePointer attribute of the returned file instance to the beginning of the file.

3.1.3.4.2.5.6.5 Exceptions/Errors

The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the CF InvalidFileName exception when the input fileName
parameter is not a valid absolute pathname.

3.1.3.4.2.5.7 mkdir

3.1.3.4.2.5.7.1 Brief Rationale

The mkdir operation provides the ability to create a directory on the file system.

3.1.3.4.2.5.7.2 Synopsis

3.1.3.4.2.5.7.3 Behavior

The mkdir operation shall create a file system directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

3.1.3.4.2.5.7.4 Returns

This operation does not return any value.

3.1.3.4.2.5.7.5 Exceptions/Errors

The mkdir operation shall raise the CF FileException if the directory indicated by the input
directoryName parameter already exists or if a file-related error occurred during the operation.

The mkdir operation shall raise the CF InvalidFileName exception when the directoryName is
not a valid directory name.

3.1.3.4.2.5.8 rmdir

3.1.3.4.2.5.8.1 Brief Rationale

The rmdir operation provides the ability to remove a directory from the file system.

3.1.3.4.2.5.8.2 Synopsis

File open (in string fileName, in boolean read_Only) raises
(InvalidFileName, FileException);

void mkdir (in string directoryName) raises (InvalidFileName,
FileException);

void rmdir (in string directoryName) raises (InvalidFileName,
FileException);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-146

3.1.3.4.2.5.8.3 Behavior

The rmdir operation shall remove the directory identified by the input directoryName parameter.

The rmdir operation shall not remove the directory identified by the input directoryName
parameter when the directory contains files.

3.1.3.4.2.5.8.4 Returns

This operation does not return any value.

3.1.3.4.2.5.8.5 Exceptions/Errors

The rmdir operation shall raise the CF FileException when the directory identified by the input
directoryName parameter does not exist, the directory contains files, or an error occurs which
prohibits the directory from being deleted.

The rmdir operation shall raise the CF InvalidFileName exception when the input directoryName
parameter is not a valid path prefix.

3.1.3.4.2.5.9 query

3.1.3.4.2.5.9.1 Brief Rationale

The query operation provides the ability to retrieve information about a file system.

3.1.3.4.2.5.9.2 Synopsis

3.1.3.4.2.5.9.3 Behavior

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

The FileSystem::query operation shall recognize and provide the designated return values for the
following fileSystemProperties (refer to 3.1.3.4.2.3.2 fileSystemProperties Query Constants):

SIZE - an ID value of "SIZE” causes the query operation to return an unsigned long long
containing the file system size (in octets).

AVAILABLE SPACE - an ID value of "AVAILABLE SPACE" causes the query
operation to return an unsigned long long containing the available space on the file
system (in octets).

Refer to 3.1.3.4.2.3.2 fileSystemProperties Query Constants for the constants for the
fileSystemProperties.

3.1.3.4.2.5.9.4 Returns

This operation does not return any value.

3.1.3.4.2.5.9.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.4.2.5.10 move

3.1.3.4.2.5.10.1 Brief Rationale

The move operation provides the ability to move a plain file to another location.

void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-147

3.1.3.4.2.5.10.2 Synopsis

3.1.3.4.2.5.10.3 Behavior

The move operation shall move the source file identified by the input sourceFileName parameter
to the destination identified by the input destinationFileName parameter.

The move operation shall overwrite the destination file, when the destination file already exists
and is not identical to the source file.

3.1.3.4.2.5.10.4 Returns

This operation does not return any value.

3.1.3.4.2.5.10.5 Exceptions/Errors

The move operation shall raise the CF FileException exception when a file-related error occurs.

The move operation shall raise the CF InvalidFileName exception when the destination pathname
is identical to the source pathname.

The move operation shall raise the CF InvalidFileName exception when the sourceFileName or
destinationFileName input parameters are not valid absolute pathnames.

3.1.3.4.3 FileManager

3.1.3.4.3.1 Description

Multiple, distributed file systems may be accessed through a file manager. The FileManager
interface appears to be a single file system although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-47: FileManager
Interface UML.)

This is called a federated file system. A federated file system is created using the mount and
unmount operations. Typically, the domain manager or system initialization software will
invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted file systems, the file manager delegates the FileSystem
operations to the appropriate file system. For example, if a file system is mounted at “/ppc2”, an
open operation for a file called “/ppc2/profile.xml” would be delegated to the mounted file
system. The mounted file system will be given the filename relative to it. In this example the
FileSystem’s open operation would receive “/profile.xml” as the fileName argument.

Another example of this concept is shown using the copy operation. When a client invokes the
copy operation, the file manager delegates the operation to the appropriate file systems (based
upon supplied pathnames) thereby allowing copy of files between file systems.

If a client does not need to mount and unmount file systems, it may treat the file manager as a
file system by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

void move (in string sourceFileName, in string
destinationFileName) raises (InvalidFileName, FileException);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-148

3.1.3.4.3.2 UML

Figure 3-47: FileManager Interface UML

3.1.3.4.3.3 Types

3.1.3.4.3.3.1 MountType

The MountType structure identifies the file systems mounted within the file manager.

3.1.3.4.3.3.2 MountSequence

The MountSequence is an unbounded sequence of Mount types.

struct MountType
{
 string mountPoint;
 FileSystem fs;
};

typedef sequence <MountType> MountSequence;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-149

3.1.3.4.3.3.3 NonExistentMount

The NonExistentMount exception indicates a mount point does not exist within the
FileManager.

3.1.3.4.3.3.4 MountPointAlreadyExists

The MountPointAlreadyExists exception indicates the mount point is already in use in the
FileManager.

3.1.3.4.3.3.5 InvalidFileSystem

The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.

3.1.3.4.3.4 Attributes

N/A

3.1.3.4.3.5 Operations

3.1.3.4.3.5.1 mount

3.1.3.4.3.5.1.1 Brief Rationale

The file manager supports the notion of a federated file system. To create a federated file
system, the mount operation associates a file system with a mount point (a directory name).

3.1.3.4.3.5.1.2 Synopsis

3.1.3.4.3.5.1.3 Behavior

The mount operation shall associate the specified file system with the mount point referenced by
the input mountPoint parameter. A mount point name shall begin with a “/” (forward slash
character). The input mountPoint parameter is a logical directory name for a file system.

3.1.3.4.3.5.1.4 Returns

This operation does not return any value.

3.1.3.4.3.5.1.5 Exceptions/Errors

The mount operation shall raise the CF InvalidFileName exception when the input mount point
does not conform to the file name syntax in 3.1.3.4.2.1 Description.

The mount operation shall raise the MountPointAlreadyExists exception when the mount point
already exists in the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystem is a
null object reference.

3.1.3.4.3.5.2 unmount

3.1.3.4.3.5.2.1 Brief Rationale

Mounted file systems may need to be removed from a file manager.

exception NonExistentMount{};

exception MountPointAlreadyExists{};

exception InvalidFileSystem{};

void mount (in string mountPoint, in FileSystem file_System)
raises (InvalidFileName, InvalidFileSystem,
MountPointAlreadyExists);

SCA version 2.2.2, REDHAWK 2.2 LTS

3-150

3.1.3.4.3.5.2.2 Synopsis

3.1.3.4.3.5.2.3 Behavior

The unmount operation shall remove a mounted file system from the file manager whose
mounted name matches the input mountPoint name.

3.1.3.4.3.5.2.4 Returns

This operation does not return any value.

3.1.3.4.3.5.2.5 Exceptions/Errors

The unmount operation shall raise the NonExistentMount exception when the mount point does
not exist.

3.1.3.4.3.5.3 getMounts

3.1.3.4.3.5.3.1 Brief Rationale

File management user interfaces may need to list a file manager’s mounted file systems.

3.1.3.4.3.5.3.2 Synopsis

3.1.3.4.3.5.3.3 Behavior

The getMounts operation returns a MountSequence that describes the mounted file systems.

3.1.3.4.3.5.3.4 Returns

The getMounts operation shall return a MountSequence that contains the file systems mounted
within the file manager.

3.1.3.4.3.5.3.5 Exceptions/Errors

This operation does not raise any exceptions.

3.1.3.4.3.5.4 File System Operations

The system may support multiple FileSystem implementations. Some file systems correspond
directly to a physical file system within the system. The FileManager interface shall support a
federated, or distributed, file system that may span multiple FileSystem components. From the
client perspective, the FileManager may be used just like any other FileSystem component since
the FileManager inherits all the FileSystem operations.

A file manager shall implement the inherited FileSystem operations as required in 3.1.3.4.2
FileSystem for each mounted file system. The FileSystem operations ensure that the
filename/directory arguments given are absolute pathnames relative to a mounted file system.
The FileSystem operations inherited by a file manager shall remove the name of the mounted file
system from input pathnames before passing the pathnames to any operation on a mounted file
system. The file manager shall propagate exceptions raised by a mounted file system.

The file manager shall use the FileSystem operations of the file system whose associated mount
point exactly matches the input fileName parameter to the lowest matching subdirectory.

3.1.3.4.3.5.5 query

3.1.3.4.3.5.5.1 Brief Rationale

The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

void unmount (in string mountPoint) raises (NonExistentMount);

MountSequence getMounts();

SCA version 2.2.2, REDHAWK 2.2 LTS

3-151

3.1.3.4.3.5.5.2 Synopsis

3.1.3.4.3.5.5.3 Behavior

The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ ID elements. As a minimum, the query
operation shall support the following input fileSystemProperties ID elements:

SIZE - a property item ID value of "SIZE" causes the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" causes the
query operation to return the combined total available space (in octets) of all the mounted
file system as unsigned long long property value.

3.1.3.4.3.5.5.4 Returns

This operation does not return any value.

3.1.3.4.3.5.5.5 Exceptions/Errors

The query operation shall raise the UnknownFileSystemProperties exception when the input
fileSystemProperties parameter contains an invalid property ID element.

3.1.3.5 Complex Type Interfaces

Complex Type Interfaces are used to describe properties whose type is complex.

3.1.3.5.1 complexDouble

The complexDouble type defines a complex value whose native type is double

3.1.3.5.2 complexDoubleSeq

The CF complexDoubleSeq type defines an unbounded sequence of complexDouble.

3.1.3.5.3 complexFloat

The complexFloat type defines a complex value whose native type is float.

void query (inout Properties fileSystemProperties) raises
(UnknownFileSystemProperties);

struct complexDouble
{
 double real;
 double imag;
};

typedef sequence <complexDouble> complexDoubleSeq;

struct complexFloat
{
 float real;
 float imag;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-152

3.1.3.5.4 complexFloatSeq

The CF complexFloatSeq type defines an unbounded sequence of complexFloat.

3.1.3.5.5 complexBoolean

The complexBoolean type defines a complex value whose native type is boolean.

3.1.3.5.6 complexBooleanSeq

The CF complexBooleanSeq type defines an unbounded sequence of complexBoolean.

3.1.3.5.7 complexULong

The complexULong type defines a complex value whose native type is unsigned long.

3.1.3.5.8 complexULongSeq

The CF complexULongSeq type defines an unbounded sequence of complexULong.

3.1.3.5.9 complexShort

The complexShort type defines a complex value whose native type is short.

3.1.3.5.10 complexShortSeq

The CF complexShortSeq type defines an unbounded sequence of complexShort.

typedef sequence <complexFloat> complexFloatSeq;

struct complexBoolean
{
 boolean real;
 boolean imag;
};

typedef sequence <complexBoolean> complexBooleanSeq;

struct complexULong
{
 unsigned long real;
 unsigned long imag;
};

typedef sequence <complexULong> complexULongSeq;

struct complexShort
{
 short real;
 short imag;
};

typedef sequence <complexShort> complexShortSeq;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-153

3.1.3.5.11 complexOctet

The complexOctet type defines a complex value whose native type is octet.

3.1.3.5.12 complexOctetSeq

The CF complexOctetSeq type defines an unbounded sequence of complexOctet.

3.1.3.5.13 complexChar

The complexChar type defines a complex value whose native type is char.

3.1.3.5.14 complexCharSeq

The CF complexCharSeq type defines an unbounded sequence of complexChar.

3.1.3.5.15 complexUShort

The complexUShort type defines a complex value whose native type is unsigned short.

3.1.3.5.16 complexUShortSeq

The CF complexUShortSeq type defines an unbounded sequence of complexUShort.

3.1.3.5.17 complexLong

The complexLong type defines a complex value whose native type is long.

struct complexOctet
{
 octet real;
 octet imag;
};

typedef sequence <complexOctet> complexOctetSeq;

struct complexChar
{
 char real;
 char imag;
};

typedef sequence <complexChar> complexCharSeq;

struct complexUShort
{
 unsigned short real;
 unsigned short imag;
};

typedef sequence <complexUShort> complexUShortSeq;

struct complexLong
{
 long real;
 long imag;
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-154

3.1.3.5.18 complexLongSeq

The CF complexLongSeq type defines an unbounded sequence of complexLong.

3.1.3.5.19 complexLongLong

The complexLongLong type defines a complex value whose native type is long long.

3.1.3.5.20 complexULongLongSeq

The CF complexULongLongSeq type defines an unbounded sequence of complexULongLong.

3.1.3.5.21 complexULongLong

The complexULongLong type defines a complex value whose native type is unsigned long long.

3.1.3.5.22 complexULongLongSeq

The CF complexULongLongSeq type defines an unbounded sequence of complexULongLong.

3.1.3.6 Domain Profile

The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary.

The types of XML files that are used to describe a system's hardware and software assets are
depicted in Figure 3-48: Relationship of Domain Profile XML File Types. The XML
vocabulary within each of these files describes a distinct aspect of the hardware and software
assets. The collection of XML which are associated with a particular software component is
referred to as that component’s software profile. The contents of a profile depends on the
component being described, although every profile contains a Software Package Descriptor – all
profiles for CORBA components contain a Software Component Descriptor. A software profile
for an application contains a Software Assembly descriptor (refer to 3.1.3.2.1.4.1 profile), the
device manager profile contains a Device Configuration Descriptor (refer to 3.1.3.2.4.4.4

typedef sequence <complexLong> complexLongSeq;

struct complexLongLong
{
 long long real;
 long long imag;
};

typedef sequence <complexULongLong> complexULongLongSeq;

struct complexULongLong
{
 unsigned long long real;
 unsigned long long imag;
};

typedef sequence <complexULongLong> complexULongLongSeq;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-155

deviceConfigurationProfile), and the domain manager software profile contains a
DomainManager Configuration Descriptor (refer to 3.1.3.2.3.4.7 domainManagerProfile).

Domain Profile files shall be complaint to the Document Type Definitions (DTDs) provided in
the companion Domain Profile description. DTD files are installed in the domain and shall have
“.dtd” as their filename extension. All XML files shall have as the first two lines as an XML
declaration (?xml) and a document type declaration (!DOCTYPE). The XML declaration
specifies the XML version and whether the document is standalone. The document type
declaration specifies the DTD for the document. Example declarations are as follows:

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE softwareassembly SYSTEM “softwareassembly.2.2.2.dtd”>

Figure 3-48: Relationship of Domain Profile XML File Types

SCA version 2.2.2, REDHAWK 2.2 LTS

3-156

3.1.3.6.1 Software Package Descriptor

A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a “.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.6.2 Software Component Descriptor

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall
have a “.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has a reference to Device Package Descriptor file.

3.1.3.6.3 Software Assembly Descriptor

A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The application factory uses this information when creating an application. A
Software Assembly Descriptor file shall have a “.sad.xml” extension.

3.1.3.6.4 Properties Descriptor

A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall have a “.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.6.5 Device Package Descriptor

A Device Package Descriptor (DPD) identifies a class of a device. A Device Package Descriptor
File shall have a “.dpd.xml” extension. A Device Package Descriptor also has Properties that
define specific properties (capacity, serial number, etc.) for this class of device.

3.1.3.6.6 Device Configuration Descriptor

A Device Configuration Descriptor (DCD) contains information about the devices associated
with a device manager, how to find the domain manager, and the configuration information (Log,
FileSystems, etc.) for a device. A Device Configuration Descriptor file shall have a “.dcd.xml”
extension.

3.1.3.6.7 Profile Descriptor

A Profile Descriptor is an XML element which contains an absolute pathname for a Software
Package Descriptor (SPD), Software Assembly Descriptor (SAD), DomainManager
Configuration Descriptor (DMD), or a Device Configuration Descriptor (DCD), depending upon
the context. This element is used as the parameter for interface profile attributes (e.g., CF
Application, CF Device, CF ApplicationFactory, CF DeviceManager, CF DomainManager).

3.1.3.6.8 DomainManager Configuration Descriptor

A DomainManager Configuration Descriptor (DMD) contains configuration information for the
domain manager. A DomainManager Configuration Descriptor file shall have a “.dmd.xml”
extension.

3.1.3.7 Core Framework Base Types

The CF Base Types are the underlying types used in the CF interfaces.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-157

3.1.3.7.1 DataType

This type is a CORBA IDL structure, which may be used to hold any CORBA basic type or
static IDL type. The id attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). The id may be an UUID string, an integer string, or a name identifier depending on
context. The value attribute may be any static IDL type or CORBA basic type.

3.1.3.7.2 DeviceSequence

The CF DeviceSequence type defines an unbounded sequence of devices.

3.1.3.7.3 FileException

The CF FileException indicates a file-related error occurred. The error number shall indicate a
CF ErrorNumberType value. The message provides information describing the error. The
message may be used for logging the error.

3.1.3.7.4 InvalidFileName

The CF InvalidFileName exception indicates an invalid file name was passed to a file service
operation. The error number shall indicate a CF ErrorNumberType value. The message provides
information describing why the filename was invalid.

3.1.3.7.5 InvalidObjectReference

The CF InvalidObjectReference exception indicates an invalid CORBA object reference error.

3.1.3.7.6 InvalidProfile

The CF InvalidProfile exception indicates an invalid profile error.

3.1.3.7.7 DuplicateName

The CF DuplicateName exception indicates a name is being used that already exists.

3.1.3.7.8 InvalidIdentifier

The CF InvalidIdentifier exception indicates an invalid identifier.

struct DataType
{
 string id;
 any value;
};

typedef sequence <Device> DeviceSequence;

exception FileException {ErrorNumberType errorNumber; string
msg; };

exception InvalidFileName {ErrorNumberType errorNumber; string
msg; };

exception InvalidObjectReference {string msg;};

exception InvalidProfile{};

exception DuplicateName {string msg};

exception InvalidIdentifier{};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-158

3.1.3.7.9 UnallowedAccess

The CF UnallowedAccess exception indicates when a specified method or interface is restricted.

3.1.3.7.10 OctetSequence

This type is a CORBA unbounded sequence of octets.

3.1.3.7.11 Properties

The CF Properties is a CORBA IDL unbounded sequence of CF DataType(s), which is used in
defining a sequence of name and value pairs.

3.1.3.7.12 StringSequence

This type defines a sequence of strings.

3.1.3.7.13 UnknownProperties

The CF UnknownProperties exception indicates a set of properties unknown by the component.

3.1.3.7.14 DeviceAssignmentType

The CF DeviceAssignmentType defines a structure that associates a component with the device
which the component either uses, is loaded upon or on which it is executed.

3.1.3.7.15 DeviceAssignmentSequence

The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of CF
DeviceAssignmentTypes.

3.1.3.7.16 ErrorNumberType

This enum is used to pass error number information in various exceptions. Those exceptions
starting with “CF_E” map the POSIX definitions (with the "CF_" removed), and is found in
reference [4].

CF_NOTSET CF_NOTSET is not defined in the POSIX specification. CF_NOTSET is an SCA
specific value that is applicable for any exception when the method specific or standard POSIX
error values are not appropriate.)

Exception UnallowedAccess{};

typedef sequence <octet> OctetSequence;

typedef sequence <DataType> Properties;

typedef sequence <string> StringSequence;

exception UnknownProperties {Properties invalidProperties; };

struct DeviceAssignmentType
{
string componentId;
string assignedDeviceId;
};

typedef sequence <DeviceAssignmentType>
DeviceAssignmentSequence;

SCA version 2.2.2, REDHAWK 2.2 LTS

3-159

3.2 APPLICATIONS

Applications are programs that perform the functions of REDHAWK. They are designed to
meet the requirements of a specific acquisition and are not defined by the SCA except as they
interface to the OE.

3.2.1 General Application Requirements

An application’s dependencies to the log, file manager, file system, CORBA Event Service, and
CORBA Naming Service are specified as connections in the SAD using the domainfinder
element.

3.2.1.1 OS Services

Applications shall perform file access through the CF File interfaces. The application filename
syntax is specified in 3.1.3.4.2.1 Description.

3.2.1.2 CORBA Services

Applications shall be limited to using CORBA and CORBA services defined in the referenced
minimum CORBA specification [5]. Dynamically-created stringified IORs may be used to
provide an IOR reference value parameter. Applications shall not utilize static stringified IORs.

Applications may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

3.2.1.3 CF Interfaces

Applications shall implement the Base Application Interfaces as specified in 3.1.3.1 Base
Application Interfaces. Use of the ResourceFactory interface per 3.1.3.1.10 ResourceFactory is
optional.

Each application component shall support the mandatory Naming Context IOR, Name Binding,
and the identifier execute parameters as described in 3.1.3.2.2.5.1 create, in addition to their
user-defined execute properties in the component’s SPD. Each application component shall bind
its object reference to the Naming Context IOR using the Name Binding parameter. Each
executable component of an application shall set its identifier attribute using the component
identifier execute parameter.

Each executable component of an application shall accept the standard argv arguments of the
POSIX exec family of functions [4].

enum ErrorNumberType
{
CF_NOTSET, CF_E2BIG, CF_EACCES, CF_EAGAIN, CF_EBADF, CF_EBADMSG,
CF_EBUSY, CF_ECANCELED, CF_ECHILD, CF_EDEADLK, CF_EDOM,
CF_EEXIST, CF_EFAULT, CF_EFBIG, CF_EINPROGRESS,
CF_EINTR,CF_EINVAL, CF_EIO, CF_EISDIR, CF_EMFILE, CF_EMLINK,
CF_EMSGSIZE, CF_ENAMETOOLONG, CF_ENFILE, CF_ENODEV, CF_ENOENT,
CF_ENOEXEC, CF_ENOLCK, CF_ENOMEM, CF_ENOSPC, CF_ENOSYS,
CF_ENOTDIR, CF_ENOTEMPTY, CF_ENOTSUP ,CF_ENOTTY, CF_ENXIO,
CF_EPERM, CF_EPIPE, CF_ERANGE , CF_EROFS, CF_ESPIPE, CF_ESRCH,
CF_ETIMEDOUT ,CF_EXDEV
};

SCA version 2.2.2, REDHAWK 2.2 LTS

3-160

An application, each application component, and each device manager shall be accompanied by
the appropriate Domain Profile files (refer to 3.1.3.6 Domain Profile).

3.2.2 Application Interfaces

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA-capable components. For CORBA-capable components, in addition to
supporting the CF Base Application interfaces, the component may implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall
be described in a Software Component Descriptor file as provides ports. Interfaces required by a
component shall be described in a Software Component Descriptor file as uses ports.

An application may define interfaces that are visible to entities external to the application. These
external interfaces are Ports, referenced in the application SAD externalports element. An
application interface shall be referenced in the application’s SAD externalports element, and
thus declared “external”, if the interface provides a service that is used by other applications.

All non-standard interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction to the extent that interfacing or replacement hardware and
software can be developed by other parties without restriction.

3.2.2.1 Service Definitions

SCA service definitions consist of APIs, behavior, state, priority and additional information that
provide the contract between the Service Provider and the Service User. IDL is used to define
the interfaces for service definitions to foster reuse and interoperability. IDL provides a method
to inherit from multiple interfaces to form a new service definition.

All SCA APIs shall have their interfaces described in IDL. All non-IDL interfaces shall provide
an IDL mapping within the service definition.

3.3 LOGICAL DEVICE

A logical device is a software component that implements one of the Base Device Interfaces. The
Base Device Interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice as
stated in 2.2.2 Core Framework. and depicted in Figure 3-49: Logical Device Interface
Relationships.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-161

Figure 3-49: Logical Device Interface Relationships

SCA version 2.2.2, REDHAWK 2.2 LTS

3-162

3.3.1 OS Services

Logical devices may use any service provided by the OE.

The executable parameters of a logical device shall accept the standard argv arguments as used
in the POSIX exec family of functions [4].

A logical device shall accept the executable parameters as specified in 3.1.3.3.3.5.1.3 Behavior
(ExecutableDevice::execute).

3.3.2 CORBA Services

Logical devices shall be limited to using CORBA and CORBA services defined in the referenced
minimum CORBA specification [5].

Logical devices may support the LogProducer interface of the CORBA Lightweight Log
Specification [7].

REDHAWK does not provide a log service. REDHAWK applications should
use log4j, log4cxx, and python.logging for all logging needs.

3.3.3 CF Interfaces

A logical device implements one of the following CF interfaces: Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (refer to 3.1.3.3.1 Device), a logical
device has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier,
Logging and TestableObject interfaces.

A logical device shall register itself with a device manager using the value associated with the
DEVICE_MGR_IOR parameter per 3.1.3.2.4.5 General Behavior.

A child device shall add itself to a parent device using the executable Composite Device IOR
parameter per 3.1.3.2.4.5 General Behavior.

The values associated with the parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR,
DEVICE_ID and DEVICE_LABEL) as described in 3.1.3.2.4.5 General Behavior shall be used
to set the Device’s softwareProfile, compositeDevice, identifier, and label attributes,
respectively.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of a replaceable device that are required for the operation and maintenance of the device.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
3.2.2 Application Interfaces.

3.3.4 Profile

Each logical device shall have an SPD, SCD, and one or more Properties Descriptors as
described in 3.1.3.6 Domain Profile. For each logical device, allocation properties shall be
defined in its referenced SPD’s property file.

SCA version 2.2.2, REDHAWK 2.2 LTS

3-163

SCA 2.2.2 requires a DPD; however, REDHAWK excludes the DPD from the
profile.

3.4 GENERAL SOFTWARE RULES

This section has changed considerably in this document. REDHAWK includes
a data and control API, an integrated development environment (IDE), a set of
component/device/service base classes, code generators, and an
implementation of the data and control API (ports), all designed to provide
developers with the infrastructure necessary to create
Components/Devices/Services that not only support the REDHAWK API, but
also match the expected behavior from exercising this API.

For more information on REDHAWK, please visit
http://www.redhawksdr.org.

SCA version 2.2.2, REDHAWK 2.2 LTS

4-1

4 ARCHITECTURE COMPLIANCE

This section has changed considerably in this document. The REDHAWK
programmatic scope and goals are different from the programmatic goals of
the office that created the SCA specification. REDHAWK is not centered on a
specification for a framework. Instead, it is an implementation of a framework
whose application programming interface (API) is documented in part by this
modified specification. A new implementation of this specification would not
make that implementation “REDHAWK” or “REDHAWK-compliant”.

In the context of REDHAWK, compliance is a guide for asset portability and
interoperability, and is determined by other factors. For example,
Components/Devices/Services, their ability to interact with the different API
supported by REDHAWK, and the way that they handle dependencies would
determine the level of compliance that those Components/Devices/Services
have.

For more information on REDHAWK, please visit
http://www.redhawksdr.org.

